Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Pellacani is active.

Publication


Featured researches published by Claudia Pellacani.


Molecular Nutrition & Food Research | 2011

Antiglycative and neuroprotective activity of colon-derived polyphenol catabolites

Elena Verzelloni; Claudia Pellacani; Davide Tagliazucchi; Sara Tagliaferri; Luca Calani; Lucio G. Costa; Furio Brighenti; Gina Borges; Alan Crozier; Angela Conte; Daniele Del Rio

SCOPE Dietary flavonoids and allied phenolic compounds are thought to be beneficial in the control of diabetes and its complications, because of their ability to inhibit oxidative stress, protein glycation and to act as neuroprotectants. Following ingestion by humans, polyphenolic compounds entering the large intestine undergo extensive metabolism by interaction with colonic microbiota and it is metabolites and catabolites of the parent compounds that enter the circulatory system. The aim of this study was to investigate the inhibitory activity of some colonic microbiota-derived polyphenol catabolites against advanced glycation endproducts formation in vitro and to determine their ability, at physiological concentrations, to counteract mild oxidative stress of cultured human neuron cells. METHODS AND RESULTS This study demonstrated that ellagitannin-derived catabolites (urolithins and pyrogallol) are the most effective antiglycative agents, whereas chlorogenic acid-derived catabolites (dihydrocaffeic acid, dihydroferulic acid and feruloylglycine) were most effective in combination in protecting neuronal cells in a conservative in vitro experimental model. CONCLUSION Some polyphenolic catabolites, generated in vivo in the colon, were able in vitro to counteract two key features of diabetic complications, i.e. protein glycation and neurodegeneration. These observations could lead to a better control of these events, which are usually correlated with hyperglycemia.


Toxicology Letters | 2014

A mechanistic view of polybrominated diphenyl ether (PBDE) developmental neurotoxicity.

Lucio G. Costa; Rian de Laat; Sara Tagliaferri; Claudia Pellacani

Polybrominated diphenyl ethers (PBDEs), extensively used in the past few decades as flame retardants in a variety of consumer products, have become world-wide persistent environmental pollutants. Levels in North America are usually higher than those in Europe and Asia, and body burden is 3-to-9-fold higher in infants and toddlers than in adults. The latter has raised concern for potential developmental toxicity and neurotoxicity of PBDEs. Experimental studies in animals and epidemiological observations in humans suggest that PBDEs may be developmental neurotoxicants. Pre- and/or post-natal exposure to PBDEs may cause long-lasting behavioral abnormalities, particularly in the domains of motor activity and cognition. The mechanisms underlying the developmental neurotoxic effects of PBDEs are not known, though several hypotheses have been put forward. One general mode of action relates to the ability of PBDEs to impair thyroid hormone homeostasis, thus indirectly affecting the developing brain. An alternative or additional mode of action involves a direct effect of PBDEs on nervous system cells; PBDEs can cause oxidative stress-related damage (DNA damage, mitochondrial dysfunction, apoptosis), and interfere with signal transduction (particularly calcium signaling), and with neurotransmitter systems. Important issues such as bioavailability and metabolism of PBDEs, extrapolation of results to low level of exposures, and the potential effects of interactions among PBDE congeners and between PBDEs and other contaminants also need to be taken into account.


Toxicology in Vitro | 2010

Low concentrations of the brominated flame retardants BDE-47 and BDE-99 induce synergistic oxidative stress-mediated neurotoxicity in human neuroblastoma cells.

Sara Tagliaferri; Andrea Caglieri; Matteo Goldoni; Silvana Pinelli; Rossella Alinovi; Diana Poli; Claudia Pellacani; Gennaro Giordano; Antonio Mutti; Lucio G. Costa

Polybrominated diphenyl ether (PBDE) flame retardants have become widespread environmental contaminants. The highest body burden has been found in toddlers and infants, due to their exposure through breast milk and house dust, and the current concern for potential adverse health effects of PBDEs relates to their developmental neurotoxicity. The mechanisms underlying the neurotoxicity of PBDEs are largely not understood, though there is evidence that PBDEs may elicit oxidative stress. In this study, two different mathematical models were used to evaluate the interaction between BDE-47 and BDE-99 on viability of neuronal cells. The combined exposure to these compounds induced synergistic effects at concentrations of BDE-47 below its threshold doses, and in a wide range of BDE-99 concentrations below its IC(50). In contrast, at concentrations of BDE-47 near its IC(50) value, and in a wide range of BDE-99 concentrations, antagonistic effects were observed. The interactions observed on cell viability were confirmed by an assessment of induction of oxidative stress. The finding that co-exposure to BDE-47 and BDE-99 could induce synergistic neurotoxic effects, in particular at low doses of BDE-47, is of much toxicological interest, as humans are exposed to mixtures of PBDEs, most notably tetra- and penta-BDE congeners.


Journal of Inorganic Biochemistry | 2009

Synthesis, characterization and deepening in the comprehension of the biological action mechanisms of a new nickel complex with antiproliferative activity.

Annamaria Buschini; Silvana Pinelli; Claudia Pellacani; Federica Giordani; Marisa Belicchi Ferrari; Franco Bisceglie; Marco Giannetto; Giorgio Pelosi; Pieralberto Tarasconi

Thiosemicarbazones are versatile organic compounds that present considerable pharmaceutical interest because of a wide range of properties. In our laboratory we synthesised some new metal-complexes with thiosemicarbazones derived from natural aldehydes which showed peculiar biological activities. In particular, a nickel complex [Ni(S-tcitr)(2)] (S-tcitr=S-citronellalthiosemicarbazonate) was observed to induce an antiproliferative effect on U937, a human histiocytic lymphoma cell line, at low concentrations (IC(50)=14.4microM). Therefore, we decided to study the interactions of this molecule with various cellular components and to characterise the induced apoptotic pathway. Results showed that [Ni(S-tcitr)(2)] causes programmed cell death via down-regulation of Bcl-2, alteration of mitochondrial membrane potential and caspase-3 activity, regardless of p53 function. The metal complex is not active on G(0) cells (i.e. fresh leukocytes) but is able to induce perturbation of the cell cycle on stimulated lymphocytes and U937 cells, in which a G(2)/M block was detected. It reaches the nucleus where it induces, at low concentrations (2.5-5.0microM), DNA damage, which could be partially ascribed to oxidative stress. [Ni(S-tcitr)(2)] is moreover able to strongly reduce the telomerase activity. Although the biological target of this metal complex is still unknown, the reported data suggest that [Ni(S-tcitr)(2)] could be a good model for the synthesis of new metal thiosemicarbazones with specific biological activity.


Oxidative Medicine and Cellular Longevity | 2016

Mechanisms of Neuroprotection by Quercetin: Counteracting Oxidative Stress and More.

Lucio G. Costa; Jacqueline M. Garrick; Pamela J. Roqué; Claudia Pellacani

Increasing interest has recently focused on determining whether several natural compounds, collectively referred to as nutraceuticals, may exert neuroprotective actions in the developing, adult, and aging nervous system. Quercetin, a polyphenol widely present in nature, has received the most attention in this regard. Several studies in vitro, in experimental animals and in humans, have provided supportive evidence for neuroprotective effects of quercetin, either against neurotoxic chemicals or in various models of neuronal injury and neurodegenerative diseases. The exact mechanisms of such protective effects remain elusive, though many hypotheses have been formulated. In addition to a possible direct antioxidant effect, quercetin may also act by stimulating cellular defenses against oxidative stress. Two such pathways include the induction of Nrf2-ARE and induction of the antioxidant/anti-inflammatory enzyme paraoxonase 2 (PON2). In addition, quercetin has been shown to activate sirtuins (SIRT1), to induce autophagy, and to act as a phytoestrogen, all mechanisms by which quercetin may provide its neuroprotection.


International Journal of Toxicology | 2012

Evaluation of DNA Damage Induced by 2 Polybrominated Diphenyl Ether Flame Retardants (BDE-47 and BDE-209) in SK-N-MC Cells

Claudia Pellacani; Annamaria Buschini; Serena Galati; Francesca Mussi; Susanna Franzoni; Lucio G. Costa

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants whose levels have increased in the environment and in human tissues in the past decades. Exposure to PBDEs has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. In spite of their widespread distribution and potential adverse health effects, only few studies have addressed the potential neurotoxicity of PBDEs. In the present study, we evaluated the cyto- and genotoxicity of 2,2′,4,4′-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209) in human neuroblastoma cells (SK-N-MC). The DNA damage was measured using the alkaline version of the Comet assay, while specific oxidative-generated DNA damage was evaluated by a modified version of the Comet assay with the repair enzyme formamidopyrimidine glycosylase (FPG). The results show that BDE-47 and BDE-209 (5-20 μmol/L) are able to induce DNA damage in human SK-N-MC cells. Pretreatment with the antioxidant melatonin significantly reduced the DNA damage induced by both congeners. The Comet assay carried out in the presence of FPG suggests that both congeners increase purine oxidation. In all cases, BDE-47 was more potent than BDE-209. The results indicate that 2 environmentally relevant PBDEs cause DNA damage which is primarily mediated by the induction of oxidative stress and may contribute to adverse health effects.


Neurochemical Research | 2013

Modulation of Paraoxonase 2 (PON2) in Mouse Brain by the Polyphenol Quercetin: A Mechanism of Neuroprotection?

Lucio G. Costa; Leah Tait; Rian de Laat; Khoi Dao; Gennaro Giordano; Claudia Pellacani; Toby B. Cole; Clement E. Furlong

AbstractQuercetin is a common flavonoid polyphenol which has been shown to exert neuroprotective actions in vitro and in vivo. Though quercetin has antioxidant properties, it has been suggested that neuroprotection may be ascribed to its ability of inducing the cell’s own defense mechanisms. The present study investigated whether quercetin could increase the levels of paraoxonase 2 (PON2), a mitochondrial enzyme expressed in brain cells, which has been shown to have potent antioxidant properties. PON2 protein, mRNA, and lactonase activity were highest in mouse striatal astrocytes. Quercetin increased PON2 levels, possibly by activating the JNK/AP-1 pathway. The increased PON2 levels induced by quercetin resulted in decreased oxidative stress and ensuing toxicity induced by two oxidants. The neuroprotective effect of quercetin was significantly diminished in cells from PON2 knockout mice. These findings suggest that induction of PON2 by quercetin represents an important mechanism by which this polyphenol may exert its neuroprotective action.


Neurotoxicology | 2014

Paraoxonase-2 (PON2) in brain and its potential role in neuroprotection

Lucio G. Costa; Rian de Laat; Khoi Dao; Claudia Pellacani; Toby B. Cole; Clement E. Furlong

Paraoxonase 2 (PON2) is a member of a gene family which also includes the more studied PON1, as well as PON3. PON2 is unique among the three PONs, as it is expressed in brain tissue. PON2 is a lactonase and displays anti-oxidant and anti-inflammatory properties. PON2 levels are highest in dopaminergic regions (e.g. striatum), are higher in astrocytes than in neurons, and are higher in brain and peripheral tissues of female mice than male mice. At the sub-cellular level, PON2 localizes primarily in mitochondria, where it scavenges superoxides. Lack of PON2 (as in PON2(-/-) mice), or lower levels of PON2 (as in male mice compared to females) increases susceptibility to oxidative stress-induced toxicity. Estradiol increases PON2 expression in vitro and in vivo, and provides neuroprotection against oxidative stress. Such neuroprotection is not present in CNS cells from PON2(-/-) mice. Similar results are also found with the polyphenol quercetin. PON2, given its cellular localization and antioxidant and anti-inflammatory actions, may represent a relevant enzyme involved in neuroprotection, and may represent a novel target for neuroprotective strategies. Its differential expression in males and females may explain gender differences in the incidence of various diseases, including neurodevelopmental, neurological, and neurodegenerative diseases.


Environmental Toxicology | 2014

Synergistic interactions between PBDEs and PCBs in human neuroblastoma cells

Claudia Pellacani; Sara Tagliaferri; Andrea Caglieri; Matteo Goldoni; Gennaro Giordano; Antonio Mutti; Lucio G. Costa

Polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) are ubiquitous environmental pollutants. Exposure to these chemicals has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. Humans and wildlife are generally exposed to a mixture of these environmental pollutants, highlighting the need to evaluate the potential effects of combined exposures. In this study, we investigated the cytotoxic effects of the combined exposure to two PBDEs and two PCBs in a human neuronal cell line. 2,2′,4,4′‐Tetrabromodiphenyl ether, 2,2′,4,4′,5‐pentabromodiphenyl ether, PCB‐126 (3,3′,4,4′,5‐pentachlorobiphenyl; a dioxin‐like PCB), and PCB‐153 (2,2′,4,4′,5,5′‐hexachlorobiphenyl; a non‐dioxin‐like PCB) were chosen, because their concentrations are among the highest in human tissues and the environment. The results suggest that the nature of interactions is related to the PCB structure. Mixtures of PCB‐153 and both PBDEs had a prevalently synergistic effect. In contrast, mixtures of each PBDE congener with PCB‐126 showed additive effects at threshold concentrations, and synergistic effects at higher concentrations. These results emphasize the concept that the toxicity of xenobiotics may be affected by possible interactions, which may be of significance given the common coexposures to multiple contaminants.


British Journal of Nutrition | 2010

Ability of a high-total antioxidant capacity diet to increase stool weight and bowel antioxidant status in human subjects

Marta Bianchi; Francesca Scazzina; Daniele Del Rio; Silvia Valtueña; Nicoletta Pellegrini; Laura Franzini; Maria Luisa Callegari; Claudia Pellacani; Annamaria Buschini; Ivana Zavaroni; Furio Brighenti

There is limited knowledge about the possible effect of unabsorbed dietary antioxidants that reach the large intestine on bowel habits. The aim of the present study was to investigate whether a dietary recommendation directed to increase diet total antioxidant capacity (TAC) is able to affect gut function in human subjects. In this cross-over intervention, nineteen subjects followed a high-TAC (HT) and a low-TAC (LT) diet for 2 weeks, which were comparable for energy, macronutrient, total dietary fibre and alcohol contents. At the end of each intervention period, the 48 h stool output was recorded. In the faecal samples obtained from a subset of nine subjects, moisture, pH, ammonia content, Lactobacillus and Bifidobacterium counts, faecal water antioxidants and genotoxicity were measured. A 3 d weighed food record was used to assess the diet composition during HT and LT diet intake. Significant increases in the intake of TAC, vitamins E and C and phenolic compounds were observed during the HT diet intake. The higher intake of antioxidants led to increased 48 h stool output (324 (SD 38) g in HT v. 218 (SD 22) g in LT), and to higher TAC and total phenolic concentrations in faecal water. No significant variation in the other measured parameters was observed between the diets. In conclusion, a diet selected to raise the intake of dietary antioxidants is able to increase stool bulk and antioxidant content of faeces.

Collaboration


Dive into the Claudia Pellacani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge