Claudia Quezada
Austral University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudia Quezada.
Circulation Research | 2012
Natalie Marín; Patricia Zamorano; Rodrigo Carrasco; Patricio Mujica; Francisco G. González; Claudia Quezada; Cynthia J. Meininger; Mauricio P. Boric; Walter N. Durán; Fabiola A. Sánchez
Rationale:Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood. Objective:We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. Methods and Results:We measured PAF-stimulated SNO of β-catenin and p120-catenin (p120) in 3 cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein), and postcapillary venular endothelial cells (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of β-catenin and p120 at the adherens junction and with hyperpermeability. Tumor necrosis fact...Rationale: Endothelial adherens junction proteins constitute an important element in the control of microvascular permeability. Platelet-activating factor (PAF) increases permeability to macromolecules via translocation of endothelial nitric oxide synthase (eNOS) to cytosol and stimulation of eNOS-derived nitric oxide signaling cascade. The mechanisms by which nitric oxide signaling regulates permeability at adherens junctions are still incompletely understood. Objective: We explored the hypothesis that PAF stimulates hyperpermeability via S-nitrosation (SNO) of adherens junction proteins. Methods and Results: We measured PAF-stimulated SNO of &bgr;-catenin and p120-catenin (p120) in 3 cell lines: ECV-eNOSGFP, EAhy926 (derived from human umbilical vein), and postcapillary venular endothelial cells (derived from bovine heart endothelium) and in the mouse cremaster muscle in vivo. SNO correlated with diminished abundance of &bgr;-catenin and p120 at the adherens junction and with hyperpermeability. Tumor necrosis factor-&agr; increased nitric oxide production and caused similar increase in SNO as PAF. To ascertain the importance of eNOS subcellular location in this process, we used ECV-304 cells transfected with cytosolic eNOS (GFPeNOSG2A) and plasma membrane eNOS (GFPeNOSCAAX). PAF induced SNO of &bgr;-catenin and p120 and significantly diminished association between these proteins in cells with cytosolic eNOS but not in cells wherein eNOS is anchored to the cell membrane. Inhibitors of nitric oxide production and of SNO blocked PAF-induced SNO and hyperpermeability, whereas inhibition of the cGMP pathway had no effect. Mass spectrometry analysis of purified p120 identified cysteine 579 as the main S-nitrosated residue in the region that putatively interacts with vascular endothelial-cadherin. Conclusions: Our results demonstrate that agonist-induced SNO contributes to junctional membrane protein changes that enhance endothelial permeability.
FEBS Letters | 2009
H. Roa; C. Gajardo; E. Troncoso; V. Fuentealba; C. Escudero; Alejandro J. Yáñez; Luis Sobrevia; Marçal Pastor-Anglada; Claudia Quezada; R. San Martín
Up regulation of the transforming growth factor‐beta 1 (TGF‐β1) axis has been recognized as a pathogenic event for progression of glomerulosclerosis in diabetic nephropathy. We demonstrate that glomeruli isolated from diabetic rats accumulate up to sixfold more extracellular adenosine than normal rats. Both decreased nucleoside uptake activity by the equilibrative nucleoside transporter 1 and increased AMP hydrolysis contribute to raise extracellular adenosine. Ex vivo assays indicate that activation of the low affinity adenosine A2B receptor subtype (A2BAR) mediates TGF‐β1 release from glomeruli of diabetic rats, a pathogenic event that could support progression of glomerulopathy when the bioavailability of adenosine is increased.
Journal of Cellular Physiology | 2013
Claudia Quezada; Wallys Garrido; Carlos Oyarzún; Katia Fernandez; Rodrigo Segura; Rómulo Melo; Paola Casanello; Luis Sobrevia; Rody San Martín
Glioblastoma multiforme (GBM) cells are characterised by their extreme chemoresistance. The activity of multiple‐drug resistance (MDR) transporters that extrude antitumor drugs from cells plays the most important role in this phenomenon. To date, the mechanism controlling the expression and activity of MDR transporters is poorly understood. Activity of the enzyme ecto‐5′‐nucleotidase (CD73) in tumor cells, which hydrolyses AMP to adenosine, has been linked to immunosuppression and prometastatic effects in breast cancer and to the proliferation of glioma cells. In this study, we identify a high expression of CD73 in surgically resected samples of human GBM. In primary cultures of GBM, inhibition of CD73 activity or knocking down its expression by siRNA reversed the MDR phenotype and cell viability was decreased up to 60% on exposure to the antitumoral drug vincristine. This GBM chemosensitization was caused by a decrease in the expression and activity of the multiple drug associated protein 1 (Mrp1), the most important transporter conferring multiple drug resistance in these cells. Using pharmacological modulators, we have recognized the adenosine A3 receptor subtype in mediation of the chemoresistant phenotype in these cells. In conclusion, we have determined that the activity of CD73 to trigger adenosine signaling sustains chemoresistant phenotype in GBM cells. J. Cell. Physiol. 228: 602–608, 2013.
Laboratory Investigation | 2013
Angel Cárdenas; Camilo Toledo; Carlos Oyarzún; Angélica Sepúlveda; Claudia Quezada; Elena Guillén-Gómez; Montserrat M. Díaz-Encarnación; Marçal Pastor-Anglada; Rody San Martín
Diabetic nephropathy ranks as the most devastating kidney disease worldwide. It characterizes in the early onset by glomerular hypertrophy, hyperfiltration and mesangial expansion. Experimental models show that overproduction of vascular endothelial growth factor (VEGF) is a pathogenic condition for podocytopathy; however the mechanisms that regulate this growth factor induction are not clearly identified. We determined that the adenosine A2B receptor (A2BAR) mediates VEGF overproduction in ex vivo glomeruli exposed to high glucose concentration, requiring PKCα and Erk1/2 activation. The glomerular content of A2BAR was concomitantly increased with VEGF at early stages of renal disease in streptozotocin-induced diabetic rats. Further, in vivo administration of an antagonist of A2BAR in diabetic rats blocked the glomerular overexpression of VEGF, mesangial cells activation and proteinuria. In addition, we also determined that the accumulation of extracellular adenosine occurs in glomeruli of diabetic rats. Correspondingly, raised urinary adenosine levels were found in diabetic rats. In conclusion, we evidenced that adenosine signaling at the onset of diabetic kidney disease is a pathogenic event that promotes VEGF induction.
Neurochemical Research | 2011
Lilia Peigñan; Wallys Garrido; Rodrigo Segura; Rómulo Melo; David Rojas; Juan G. Cárcamo; Rody San Martín; Claudia Quezada
Glioblastoma multiforme (GBM) is a brain tumour characterised by a remarkably high chemoresistance and infiltrating capability. To date, chemotherapy with temozolomide has contributed only poorly to improved survival rates in patients. One of the most important mechanisms of chemoresistance comes about through the activity of certain proteins from the ATP-binding cassette superfamily that extrudes antitumour drugs, or their metabolites, from cells. We identify an increased expression of the multiple drug resistance-associated protein 1 (Mrp1) in glioblastoma multiforme biopsies and in T98G and G44 cell lines. The activity of this transporter was also confirmed by measuring the extrusion of the fluorescent substrate CFDA. The sensitivity of GBM cells was low upon exposure to temozolomide, vincristine and etoposide, with decreases in cell viability of below 20% seen at therapeutic concentrations of these drugs. However, combined exposure to vincristine or etoposide with an inhibitor of Mrp1 efficiently decreased cell viability by up to 80%. We conclude that chemosensitization of cells with inhibitors of Mrp1 activity might be an efficient tool for the treatment of human GBM.
Biochemical and Biophysical Research Communications | 2011
Wallys Garrido; M. Muñoz; R. San Martín; Claudia Quezada
Glioblastoma multiforme (GBM) is the most aggressive of brain tumors and is extremely insensitive to anticancer drugs. Studies have attributed the ABC transporter Mrp1 (ABCC1, multiple-drug resistance protein 1) with conferring chemoresistance in this tumor by extrusion of a wide spectrum of anticancer drugs. Therefore it is crucial to search for and investigate inhibitors of Mrp1 activity in GBM cells, particularly those that could be safe as chemosensitizers to anticancer drugs in clinical studies. We find that in primary cultured or T98G GBM cells exposed to therapeutic plasma concentrations of FK506 (tacrolimus), the expression of Mrp1 was decreased in a dose-dependent manner. The activity of this transporter, measured by CFDA fluorescent substrate extrusion, decreased significantly in primary cultured GBM cells on exposure to FK506 at concentrations of 15 ng/ml. When GBM cells were exposed to anticancer drugs vincristine, etoposide or taxol, cell viability was not affected. However when the anticancer drugs were assayed in combination with FK506, cell viability was significantly decreased by as much as 50% in GBM primary culture. We conclude that FK506 could be a valuable tool for chemosensitization of GBM cells, offering a possible improvement to the current poor therapy available for high-grade human gliomas.
Oncotarget | 2016
Ángelo Torres; Yosselyn Vargas; Daniel Uribe; Catherine Jaramillo; Alejandra Gleisner; Flavio Salazar-Onfray; Mercedes N. López; Rómulo Melo; Carlos Oyarzún; Rody San Martín; Claudia Quezada
MRP1 transporter correlates positively with glioma malignancy and the Multiple Drug Resistance (MDR) phenotype in Glioblastoma Multiforme (GBM). Evidence shows that the MRP1 transporter is controlled by the adenosine signalling axis. The aim of this study was to identify the role of adenosine on the MDR phenotype in Glioblastoma Stem-like Cells (GSCs), the cell population responsible for the tumorigenic and chemoresistance capabilities of this tumour. We found that GSCs have increased intrinsic capacity to generate extracellular adenosine, thus controlling MRP1 transporter expression and activity via activation of the adenosine A3 receptor (A3AR). We showed PI3K/Akt and MEK/ERK1/2 signaling pathways downstream A3AR to control MRP1 in GSCs. In vitro pharmacological blockade of A3AR had a chemosensitizing effect, enhancing the actions of antitumour drugs and decreasing cell viability and proliferation of GSCs. In addition, we produced an in vivo xenograft model by subcutaneous inoculation of human GSCs in NOD/SCID-IL2Rg null mice. Pharmacological blockade of A3AR generated a chemosensitizing effect, enhancing the effectiveness of the MRP1 transporter substrate, vincristine, reducing tumour size and the levels of CD44 and Nestin stem cell markers as well as the Ki-67 proliferation indicator. In conclusion, we demonstrated the chemosensitizing effect of A3AR blockade on GSCs.
Current Drug Targets | 2013
Claudia Quezada; Sebastián Alarcón; Catherinne Jaramillo; Daniel Munoz; Carlos Oyarzún; Rody San Martín
Diabetic nephropathy (DN) continues being the primary cause of chronic hemodialysis and terminal renal disease worldwide. At tissue levels the DN occurs with glomerulopathy affecting the integrity of the filtration barrier and with an extensive glomerular and tubule-interstitial fibrosis. Current available therapeutic approaches have only demonstrated a modest effect on progression of kidney injury. Therefore, more research concerning the pathomechanisms and possible interventions are needed. Interestingly, in the last years it has been documented that DN progresses with growing levels of the nucleoside adenosine. This finding increased the interest in the events controlling the extracellular levels of the nucleoside. While the metabolism of extracellular ATP and cyclic AMP are well recognized sources, evidences regarding the role of the equilibrative nucleoside transporters in controlling adenosine availability and promoting diabetic glomerulopathy have recently acquired a pivotal role. The physiological effects of nucleoside are mediated by the P1 family of adenosine receptors. It has been shown in vivo that the use of an antagonist of the A2B receptor subtype can block the most remarkable early alterations seen in diabetic glomerulopathy. Furthermore, using models of chronic kidney injury it was demonstrated that fibrosis can also be blocked using treatment with the antagonist of A2B receptor subtype. This review highlights these findings that correlate the activity of a low affinity adenosine receptor with an increase in the ligand availability in the pathological state. In addition, we discuss the possible therapeutic interventions of adenosine signaling with regards to DN treatment.
Transplant Immunology | 2009
M.C. Rauch; A. San Martín; D. Ojeda; Claudia Quezada; M. Salas; Juan G. Cárcamo; Alejandro J. Yáñez; Juan C. Slebe; A. Claude
BACKGROUND Tacrolimus (FK506) is a macrolide immunosuppressant drug from the calcineurin inhibitor family, widely used in solid organ and islet cell transplantation, but produces significant side-effects. OBJECTIVE This study examined the effect of FK506 on interleukin-2 (IL-2) and insulin secretion, establishing a novel characteristic of this drug that could explain its diverse adverse effects, and developed an experimental model for the simultaneous analysis of mRNA expression and protein secretion affected by this drug. METHODS The IL-2 levels when tacrolimus was administered were analysed by Western blot, immunocytochemistry and RT-PCR in a T lymphocyte cellular line (Jurkat) 24 h post-stimulation. The insulin levels when tacrolimus was administered were analysed 4 h after stimulation of glucose-induced insulin secretion in a pancreatic cellular line (MIN6). RESULTS The previously published information describes tacrolimus as only capable of partially blocking IL-2 mRNA expression. In our hands, the cellular content of IL-2 is almost undetectable in stimulated Jurkat cells and can be detected in cellular extracts only when the secretory pathway is blocked by brefeldin A (BFA). BFA added 2 h after the beginning of stimulation was able to inhibit IL-2 secretion, without affecting IL-2 mRNA expression. Therefore BFA utilization allowed us to establish a model to analyze the effect on IL-2 secretion, separately from its expression. Tacrolimus added before stimulation inhibits only IL-2 synthesis, but blocks IL-2 protein secretion when added 2 h after stimulation. Similarly, tacrolimus is also capable of blocking the glucose-stimulated secretion of insulin by MIN6 cells. An increase of the intracellular content can be detected concomitantly with a decrease of the hormone measured in the culture medium. CONCLUSIONS Results of this study indicate that tacrolimus possesses another important effect in addition to the inhibition of IL-2 gene transcription, namely the ability to act as a general inhibitor of the protein secretory pathway. These results strongly suggest that the diabetogenic effect of the immune suppressant FK506 could be caused by the blockade of insulin secretion. This novel effect also provides an explanation for other side-effects observed in immunosuppressive treatment.
Revista Medica De Chile | 2011
Claudia Quezada; Lilia Peigñan; Rodrigo Segura; Francisco J Ayala Riquelme; Rómulo Melo; David Rojas Z; Freddy Ayach; Rody San Martín; Juan G. Cárcamo
BACKGROUND Mortality rate is dramatically high in high grade brain tumors. The presence of multiple drug resistance transporters in glioblastoma multiforme, has contributed largely to the poor efficacy of targeted therapy against cancer in the central nervous system. AIM To analyze the percentage of survival and mortality of patients with glioblastoma multiforme in a cohort of patients in Chile and to co-rrelate the chemo-resistance of these cells with the expression level of multiple drug resistance transporters. MATERIALS AND METHODS Eighteen biopsies of glioblastoma multiforme were obtained from patients at the Institute of Neurosurgery Dr. Asenjo (INCA). The tumor cells were obtained from primary cultures and the expression and activity of multiple drug resistance transporters was assessed by RT-PCR and immunohistochemistry. Population-based study was performed using the databases of the Department of Neurosurgery of INCA. RESULTS The number of patients with glioblastoma multiforme increased between 2007 and 2009, from 3.5% to 7.9% of total brain tumors. Mortality of these tumors is 90 % at three years. A high expression and activity of the multiple drugs resistance associated protein 1 (Mrp1) transporter was observed in primary cultures of biopsies. CONCLUSIONS We propose that Mrp1 activity is responsible for the chemo-resistance of the glioblastoma multiforme and inhibition of this transporter could represent a plausible strategy for the treatment.