Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudia Scholl is active.

Publication


Featured researches published by Claudia Scholl.


Nature | 2009

Systematic RNA interference reveals that oncogenic KRAS -driven cancers require TBK1

David A. Barbie; Pablo Tamayo; Jesse S. Boehm; So Young Kim; Susan E. Moody; Ian F. Dunn; Anna C. Schinzel; Peter Sandy; Etienne Meylan; Claudia Scholl; Stefan Fröhling; Edmond M. Chan; Martin L. Sos; Kathrin Michel; Craig H. Mermel; Serena J. Silver; Barbara A. Weir; Jan H. Reiling; Qing Sheng; Piyush B. Gupta; Raymond C. Wadlow; Hanh Le; Ben S. Wittner; Sridhar Ramaswamy; David M. Livingston; David M. Sabatini; Matthew Meyerson; Roman K. Thomas; Eric S. Lander; Jill P. Mesirov

The proto-oncogene KRAS is mutated in a wide array of human cancers, most of which are aggressive and respond poorly to standard therapies. Although the identification of specific oncogenes has led to the development of clinically effective, molecularly targeted therapies in some cases, KRAS has remained refractory to this approach. A complementary strategy for targeting KRAS is to identify gene products that, when inhibited, result in cell death only in the presence of an oncogenic allele. Here we have used systematic RNA interference to detect synthetic lethal partners of oncogenic KRAS and found that the non-canonical IκB kinase TBK1 was selectively essential in cells that contain mutant KRAS. Suppression of TBK1 induced apoptosis specifically in human cancer cell lines that depend on oncogenic KRAS expression. In these cells, TBK1 activated NF-κB anti-apoptotic signals involving c-Rel and BCL-XL (also known as BCL2L1) that were essential for survival, providing mechanistic insights into this synthetic lethal interaction. These observations indicate that TBK1 and NF-κB signalling are essential in KRAS mutant tumours, and establish a general approach for the rational identification of co-dependent pathways in cancer.


Journal of Clinical Oncology | 2005

Genetics of myeloid malignancies: pathogenetic and clinical implications.

Stefan Fröhling; Claudia Scholl; D. Gary Gilliland; Ross L. Levine

Myeloid malignancies are clonal disorders that are characterized by acquired somatic mutation in hematopoietic progenitors. Recent advances in our understanding of the genetic basis of myeloid malignancies have provided important insights into the pathogenesis of acute myeloid leukemia (AML) and myeloproliferative diseases (MPD) and have led to the development of novel therapeutic approaches. In this review, we describe our current state of understanding of the genetic basis of AML and MPD, with a specific focus on pathogenetic and therapeutic significance. Specific examples discussed include RAS mutations, KIT mutations, FLT3 mutations, and core binding factor rearrangements in AML, and JAK2 mutations in polycythemia vera, essential thrombocytosis, and chronic idiopathic myelofibrosis.


Journal of Clinical Oncology | 2006

Disclosure of Candidate Genes in Acute Myeloid Leukemia With Complex Karyotypes Using Microarray-Based Molecular Characterization

Frank G. Rücker; Lars Bullinger; Carsten Schwaenen; Daniel B. Lipka; Swen Wessendorf; Stefan Fröhling; Martin Bentz; Simone Miller; Claudia Scholl; Richard F. Schlenk; Bernhard Radlwimmer; Hans A. Kestler; Jonathan R. Pollack; Peter Lichter; Konstanze Döhner; Hartmut Döhner

PURPOSE To identify novel genomic regions of interest in acute myeloid leukemia (AML) with complex karyotypes, we applied comparative genomic hybridization to microarrays (array-CGH), allowing high-resolution genome-wide screening of genomic imbalances. PATIENTS AND METHODS Sixty AML cases with complex karyotypes were analyzed using array-CGH; parallel analysis of gene expression was performed in a subset of cases. RESULTS Genomic losses were found more frequently than gains. The most frequent losses affected 5q (77%), 17p (55%), and 7q (45%), and the most frequent genomic gains 11q (40%) and 8q (38%). Critical segments could be delineated to genomic fragments of only 0.8 to a few megabase-pairs of DNA. In lost/gained regions, gene expression profiling detected a gene dosage effect with significant lower/higher average gene expression levels across the genes located in the respective regions. Furthermore, high-level DNA amplifications were identified in several regions: 11q23.3-q24.1 (n = 7), 21q22 (n = 6), 11q23.3 (n = 5), 13q12 (n = 3), 8q24 (n = 3), 9p24 (n = 2), 12p13 (n = 2), and 20q11 (n = 2). Parallel analysis of gene expression in critical amplicons displayed overexpressed candidate genes (eg, C8FW and MYC in 8q24). CONCLUSION In conclusion, a large spectrum of genomic imbalances, including novel recurring changes in AML with complex karyotypes, was identified using array-CGH. In addition, the combined analysis of array-CGH data with gene expression profiles allowed the detection of candidate genes involved in the pathogenesis of AML.


Seminars in Oncology | 2008

Deregulation of Signaling Pathways in Acute Myeloid Leukemia

Claudia Scholl; D. Gary Gilliland; Stefan Fröhling

In acute myeloid leukemia (AML), aberrant signal transduction enhances the survival and proliferation of hematopoietic progenitor cells. Activation of signal transduction in AML may occur through a variety of genetic alterations affecting different signaling molecules, such as the FLT3 and KIT receptor tyrosine kinases (RTKs) and members of the RAS family of guanine nucleotide-binding proteins. These mutant signaling proteins are attractive therapeutic targets; however, developing targeted therapies for each genotypic variant and determining the relationships between different genotypes and critical functional dependencies of the leukemic cells remain major challenges. As the large number of mutant signaling proteins that have been identified in AML are likely to reflect activation of a more limited number of downstream effector pathways, such as the RAF/MEK/ERK and PI3K/AKT cascades, targeting these unifying pathways may represent a more broadly applicable therapeutic strategy. Furthermore, integrative genomic studies combining DNA sequencing, DNA copy number analysis, transcriptional profiling, and functional genetic approaches hold great promise for identifying additional signaling abnormalities in AML that are relevant to leukemogenesis and can be exploited therapeutically. Eventually, it may become possible to use pathogenesis-oriented combinations of signal transduction inhibitors to improve the cure rate in AML patients.


Journal of Clinical Investigation | 2007

The homeobox gene CDX2 is aberrantly expressed in most cases of acute myeloid leukemia and promotes leukemogenesis

Claudia Scholl; Dimple Bansal; Konstanze Döhner; Karina Eiwen; Brian J. P. Huntly; Benjamin H. Lee; Frank G. Rücker; Richard F. Schlenk; Lars Bullinger; Hartmut Döhner; D. Gary Gilliland; Stefan Fröhling

The homeobox transcription factor CDX2 plays an important role in embryonic development and regulates the proliferation and differentiation of intestinal epithelial cells in the adult. We have found that CDX2 is expressed in leukemic cells of 90% of patients with acute myeloid leukemia (AML) but not in hematopoietic stem and progenitor cells derived from normal individuals. Stable knockdown of CDX2 expression by RNA interference inhibited the proliferation of various human AML cell lines and strongly reduced their clonogenic potential in vitro. Primary murine hematopoietic progenitor cells transduced with Cdx2 acquired serial replating activity, were able to be continuously propagated in liquid culture, generated fully penetrant and transplantable AML in BM transplant recipients, and displayed dysregulated expression of Hox family members in vitro and in vivo. These results demonstrate that aberrant expression of the developmental regulatory gene CDX2 in the adult hematopoietic compartment is a frequent event in the pathogenesis of AML; suggest a role for CDX2 as part of a common effector pathway that promotes the proliferative capacity and self-renewal potential of myeloid progenitor cells; and support the hypothesis that CDX2 is responsible, in part, for the altered HOX gene expression that is observed in most cases of AML.


Journal of Clinical Oncology | 2002

Comparison of Cytogenetic and Molecular Cytogenetic Detection of Chromosome Abnormalities in 240 Consecutive Adult Patients With Acute Myeloid Leukemia

Stefan Fröhling; Silvia Skelin; Claudia Liebisch; Claudia Scholl; Richard F. Schlenk; Hartmut Döhner; Konstanze Döhner

PURPOSE To prospectively compare cytogenetic and molecular cytogenetic analysis for the detection of the most relevant chromosome abnormalities in a large series of patients with acute myeloid leukemia (AML). PATIENTS AND METHODS Two hundred forty consecutive adult patients with AML entered onto the multicenter treatment trial AML HD93 were studied. Chromosome banding and fluorescence in situ hybridization (FISH) applying a comprehensive set of genomic DNA probes were performed in a single reference laboratory. RESULTS Two cases of inv(16), three cases of t(11q23), and three cases of t(8;21)var were only detected by molecular cytogenetics. By FISH, aberrations were identified in three cases with normal karyotypes: inv(16), -Y (in a patient with low metaphase yield on chromosome banding) and a 12p microdeletion. Additional aneuploidies, in particular +8q and +11q, were diagnosed by FISH; however, virtually all these aberrations occurred in patients with complex karyotypes or as an additional abnormality in leukemias with an AML-specific translocation. Finally, aberrations were detected by FISH in eight of 14 patients with no assessable metaphases. CONCLUSION In most cases of AML, conventional cytogenetic study reliably detects chromosomal abnormalities, and this method should not be replaced by FISH. FISH should be used as a complementary method for the detection of more subtle abnormalities, such as inv(16) and t(11q23), in all patients with newly diagnosed AML and for suspected t(8;21)var. Furthermore, molecular cytogenetics using this comprehensive set of DNA probes provides a valuable diagnostic tool for patients with poor chromosome morphology, low or no yields of metaphase cells, or both.


Blood | 2008

An FLT3 gene-expression signature predicts clinical outcome in normal karyotype AML

Lars Bullinger; Konstanze Döhner; Raphael Kranz; Christoph Stirner; Stefan Fröhling; Claudia Scholl; Young Hyo Kim; Richard F. Schlenk; Robert Tibshirani; Hartmut Döhner; Jonathan R. Pollack

Acute myeloid leukemia with normal karyotype (NK-AML) represents a cytogenetic grouping with intermediate prognosis but substantial molecular and clinical heterogeneity. Within this subgroup, presence of FLT3 (FMS-like tyrosine kinase 3) internal tandem duplication (ITD) mutation predicts less favorable outcome. The goal of our study was to discover gene-expression patterns correlated with FLT3-ITD mutation and to evaluate the utility of a FLT3 signature for prognostication. DNA microarrays were used to profile gene expression in a training set of 65 NK-AML cases, and supervised analysis, using the Prediction Analysis of Microarrays method, was applied to build a gene expression-based predictor of FLT3-ITD mutation status. The optimal predictor, composed of 20 genes, was then evaluated by classifying expression profiles from an independent test set of 72 NK-AML cases. The predictor exhibited modest performance (73% sensitivity; 85% specificity) in classifying FLT3-ITD status. Remarkably, however, the signature outperformed FLT3-ITD mutation status in predicting clinical outcome. The signature may better define clinically relevant FLT3 signaling and/or alternative changes that phenocopy FLT3-ITD, whereas the signature genes provide a starting point to dissect these pathways. Our findings support the potential clinical utility of a gene expression-based measure of FLT3 pathway activation in AML.


Journal of Clinical Oncology | 2010

Prognostic Impact of Minimal Residual Disease in CBFB-MYH11–Positive Acute Myeloid Leukemia

Andrea Corbacioglu; Claudia Scholl; Richard F. Schlenk; Karina Eiwen; Juan Du; Lars Bullinger; Stefan Fröhling; Peter Reimer; Mathias Rummel; Hans-Günter Derigs; David Nachbaur; Jürgen Krauter; Arnold Ganser; Hartmut Döhner; Konstanze Döhner

PURPOSE To evaluate the prognostic impact of minimal residual disease (MRD) in patients with acute myeloid leukemia (AML) expressing the CBFB-MYH11 fusion transcript. PATIENTS AND METHODS Quantitative reverse transcriptase polymerase chain reaction (PCR) was performed on 684 bone marrow (BM; n = 331) and/or peripheral blood (PB; n = 353) samples (median, 13 samples per patient) from 53 younger adult (16 to 60 years old) patients with AML treated in prospective German-Austrian AML Study Group treatment trials. Samples were obtained at diagnosis (BM, n = 45; PB, n = 48), during treatment course (BM, n = 153; PB, n = 122), and at follow-up (BM, n = 133; PB, n = 183). To evaluate the applicability of PB for MRD detection, 198 paired BM and PB samples obtained at identical time points were analyzed. RESULTS The following three clinically relevant checkpoints were identified during consolidation and early follow-up that predicted relapse: achievement of PCR negativity in at least one BM sample during consolidation therapy (2-year relapse-free survival [RFS], 79% v 54% for PCR positivity; P = .035); achievement of PCR negativity in at least two BM or PB samples during consolidation therapy and early follow-up (< or = 3 months; 2-year RFS, P = .001; overall survival, P = .01); and conversion from PCR negativity to PCR positivity with copy ratios of more than 10 after consolidation therapy. Analysis of paired BM and PB samples revealed BM samples to be more sensitive during the course of therapy, whereas for follow-up, PB samples were equally informative. CONCLUSION We defined clinically relevant MRD checkpoints that allow for the identification of patients with CBFB-MYH11-positive AML who are at high risk of relapse. Monitoring of CBFB-MYH11 transcript levels should be incorporated into future clinical trials to guide therapeutic decisions.


Blood | 2014

Requirement for CDK6 in MLL-rearranged acute myeloid leukemia

Theresa Placke; Katrin Faber; Atsushi Nonami; Sarah Putwain; Helmut R. Salih; Florian H. Heidel; Alwin Krämer; David E. Root; David A. Barbie; Andrei V. Krivtsov; Scott A. Armstrong; William C. Hahn; Brian J. P. Huntly; Stephen M. Sykes; Michael D. Milsom; Claudia Scholl; Stefan Fröhling

Chromosomal rearrangements involving the H3K4 methyltransferase mixed-lineage leukemia (MLL) trigger aberrant gene expression in hematopoietic progenitors and give rise to an aggressive subtype of acute myeloid leukemia (AML). Insights into MLL fusion-mediated leukemogenesis have not yet translated into better therapies because MLL is difficult to target directly, and the identity of the genes downstream of MLL whose altered transcription mediates leukemic transformation are poorly annotated. We used a functional genetic approach to uncover that AML cells driven by MLL-AF9 are exceptionally reliant on the cell-cycle regulator CDK6, but not its functional homolog CDK4, and that the preferential growth inhibition induced by CDK6 depletion is mediated through enhanced myeloid differentiation. CDK6 essentiality is also evident in AML cells harboring alternate MLL fusions and a mouse model of MLL-AF9-driven leukemia and can be ascribed to transcriptional activation of CDK6 by mutant MLL. Importantly, the context-dependent effects of lowering CDK6 expression are closely phenocopied by a small-molecule CDK6 inhibitor currently in clinical development. These data identify CDK6 as critical effector of MLL fusions in leukemogenesis that might be targeted to overcome the differentiation block associated with MLL-rearranged AML, and underscore that cell-cycle regulators may have distinct, noncanonical, and nonredundant functions in different contexts.


Proceedings of the National Academy of Sciences of the United States of America | 2006

Cdx4 dysregulates Hox gene expression and generates acute myeloid leukemia alone and in cooperation with Meis1a in a murine model

Dimple Bansal; Claudia Scholl; Stefan Fröhling; Elizabeth P. McDowell; Benjamin H. Lee; Konstanze Döhner; Patricia Ernst; Alan J. Davidson; George Q. Daley; Leonard I. Zon; D. Gary Gilliland; Brian J. P. Huntly

HOX genes have emerged as critical effectors of leukemogenesis, but the mechanisms that regulate their expression in leukemia are not well understood. Recent data suggest that the caudal homeobox transcription factors CDX1, CDX2, and CDX4, developmental regulators of HOX gene expression, may contribute to HOX gene dysregulation in leukemia. We report here that CDX4 is expressed normally in early hematopoietic progenitors and is expressed aberrantly in ≈25% of acute myeloid leukemia (AML) patient samples. Cdx4 regulates Hox gene expression in the adult murine hematopoietic system and dysregulates Hox genes that are implicated in leukemogenesis. Furthermore, bone marrow progenitors that are retrovirally engineered to express Cdx4 serially replate in methylcellulose cultures, grow in liquid culture, and generate a partially penetrant, long-latency AML in bone marrow transplant recipients. Coexpression of the Hox cofactor Meis1a accelerates the Cdx4 AML phenotype and renders it fully penetrant. Structure–function analysis demonstrates that leukemic transformation requires intact Cdx4 transactivation and DNA-binding domains but not the putative Pbx cofactor interaction motif. Together, these data indicate that Cdx4 regulates Hox gene expression in adult hematopoiesis and may serve as an upstream regulator of Hox gene expression in the induction of acute leukemia. Inasmuch as many human leukemias show dysregulated expression of a spectrum of HOX family members, these collective findings also suggest a central role for CDX4 expression in the genesis of acute leukemia.

Collaboration


Dive into the Claudia Scholl's collaboration.

Top Co-Authors

Avatar

Stefan Fröhling

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hanno Glimm

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar

Ross L. Levine

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

David A. Barbie

Brigham and Women's Hospital

View shared research outputs
Researchain Logo
Decentralizing Knowledge