Claudio Alister
Pontifical Catholic University of Chile
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudio Alister.
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2009
Claudio Alister; Patricio Gómez; Sandra Rojas; Marcelo Kogan
A four-year field study was conducted to determine the effect of pluviometric conditions on pendimethalin and oxyfluorfen soil dynamics. Adsorption, dissipation and soil movement were studied in a sandy loam soil from 2003 to 2007. Pendimethalin and oxyfluorfen were applied every year on August at 1.33 and 0.75 kg ha−1, respectively. Herbicide soil concentrations were determined at 0, 10, 20, 40, 90 and 340 days after application (DAA), under two pluviometric regimens, natural rainfall and irrigated (30 mm every 15 days during the first 90 DAA). More than 74% of the herbicide applied was detected at the top 2.5 cm layer for both herbicides, and none was detected at 10 cm or deeper. Pendimethalin soil half-life ranged from 10.5 to 31.5 days, and was affected mainly by the time interval between application and the first rain event. Pendimethalin soil residues at 90 DAA fluctuated from 2.5 to 13.8% of the initial amount applied, and it decreased to 2.4 and 8.6% at 340 DAA. Oxyfluorfen was more persistent than pendimethalin as indicated by its soil half-life which ranged from 34.3 to 52.3 days, affected primarily by the rain amount at the first rainfall after application. Oxyfluorfen soil residues at 90 DAA ranged from 16.7 to 34.8% and it decreased to 3.3 and 17.9% at 340 DAA. Based on half-life values, herbicide soil residues after one year, and soil depth reached by the herbicides, we conclude that both herbicides should be considered as low risk to contaminate groundwater. However, herbicide concentration at the top 2.5 cm layer should be considered in cases where runoff or soil erosion could occur, because of the potential for surface water contamination.
Pest Management Science | 2008
Claudio Alister; Sandra Rojas; Patricio Gómez; Marcelo Kogan
BACKGROUND Flumioxazin is a soil-applied herbicide recommended for broadleaf weed control in soybeans and peanuts, and was recently introduced for vineyard weed management. Considering the limited information available in relation to flumioxazin field soil behaviour, the main objectives of this study were to determine the persistence, adsorption and movement of flumioxazin in soil in four Chilean vineyard production areas. RESULTS DT(50) values ranged from 10.6 +/- 1.0 to 32.1 +/- 3.1 days between localities, being correlated with rain events, time between herbicide application and first heavy rain event, and soil pH. Flumioxazin soil residue found at 90 days after application (DAA) varied from 9.6 to 24.9% of the initial amount applied, and depended on the total rainfall amount that occurred during the first 90 DAA. Herbicide leaching below 15 cm was approximately 45% of the flumioxazin detected at 90 DAA in the whole soil profile. Flumioxazin maximum leaching soil depth was 45 cm at all locations. K(d) values varied from 2.54 to 6.51 mg L(-1), depending on localities and soil profile depth, and correlated positively with organic carbon and clay content. CONCLUSIONS These results indicate that flumioxazin is a herbicide with low environmental risk owing to its short DT(50), reduced soil residues 3 months after application and low effective dose.
Ciencia E Investigacion Agraria | 2011
Claudio Alister; Manuel Araya; Marcelo Kogan
Once pesticides reach the soil, there are several factors that affect their soil behavior. To identify the principal soil and herbicide properties that control their adsorption and leaching, a study of five Chilean agricultural and forest soils was performed. Simazine, diuron, terbuthylazine and MCPA were applied to the top of 45-cm tall by 12-cm diameter disturbed soil columns, filled with either an Andisol, Ultisol, Entisol or one of two Inceptisol soils. After herbicide applications, each lysimeter received 24 mm of simulated rain every 24 hours for five days. Once water percolation stopped, the lysimeters were divided into five sections and herbicide concentrations were quantified using High Pressure Liquid Chromatography. Relationships between soil physicochemical properties, herbicide sorption (adsorption and desorption) and herbicide leaching were determined. All herbicides exhibited the least depth reached from the Andisol soil (10 cm) and the highest from the Ultisol soil (45 cm). The principal soil property that affected herbicide adsorption was the soil organic carbon content, specifically the fulvic acid-humins fraction. Soil leaching was related to the inverse of soil adsorption (1/Kd), cation exchange capacity, humic substances content and herbicide pKa. These results suggest that it is possible to develop simple quantitative models to predict the soil-leaching properties of pesticides
Journal of Environmental Science and Health Part B-pesticides Food Contaminants and Agricultural Wastes | 2010
Claudio Alister; Manuel Araya; Marcelo Kogan
This investigation was performed to determine the effect of physicochemical soil properties on penoxsulam, molinate, bentazon, and MCPA adsorption–desorption processes. Four soils from Melozal (35° 43′ S; 71° 41′ W), Parral (36° 08′ S; 71° 52′ W), San Carlos (36° 24′ S; 71° 57′ W), and Panimavida (35° 44′ S; 71° 24′ W) were utilized. Herbicide adsorption reached equilibrium after 4 h in all soils. The Freundlich L-type isotherm described the adsorption process, which showed a high affinity between herbicides and sorption sites mainly because of hydrophobic and H-bonds interaction. Penoxsulam showed the highest adsorption coefficients (4.23 ± 0.72 to 10.69 ± 1.58 mL g−1) and were related to soil pH. Molinate showed Kd values between 1.72 ± 0.01 and 2.3 ± 0.01 mL g−1and were related to soil pH and organic matter, specifically to the amount of humic substances. Bentazon had a high relationship with pH and humic substances and its Kd values were the lowest, ranging from 0.11 ± 0.01 to 0.42 ± 0.01 mL g−1. MCPA Kd ranged from 0.14 ± 0.02 to 2.72 ± 0.01 mL g−1, however its adsorption was related to humic acids and clay content. According to these results, the soil factors that could explain the sorption process of the studied herbicides under paddy rice soil conditions, were principally humic substances and soil pH. Considering the sorption variability observed in this study and the potential risk for groundwater contamination, it is necessary to develop weed rice management strategies that limit use of herbicides that exhibit low soil adsorption in areas with predisposing conditions to soil leaching.
Ciencia E Investigacion Agraria | 2011
Marcelo Kogan; Patricio Gómez; Albert J. Fischer; Claudio Alister
M. Kogan, P. Gomez, A. Fischer, and C. Alister. 2011. Using penoxsulam ALS inhibitor as a broad-spectrum herbicide in Chilean rice. Cien. Inv. Agr. 38(1): 83-93. The continuouslyflooded rice production system in Chile has selected highly competitive aquatic weeds selection capable of reducing paddy yields by 25 to 50%. Penoxsulam is a broad-spectrum triazolopyrimidine (ALS inhibitor) commercially introduced in Chile in 2006, where Alisma plantago aquatica hads already evolved resistance to sulfonylurea herbicides (SU). Several field trials with water seeded rice were conducted during 2003 and 2004 in Chile to determine efficacy, timing of application, spectrum of control, and control of SU-resistant A. plantago aquatica with the herbicide penoxsulam, either in single applications or in sequence with other herbicides. Penoxsulam was applied a) 12 days after seeding (DAS) into the water (IW), b) in postemergence after draining the water from field (ADW) at 35 DAS or c) IW followed by ADW applications of MCPA, cyhalofop, bentazon, or triclopyr. Penoxsulam was tested at 20, 30, and 40 g a.i. ha -1 . Comparisons were made with recommended rates of other IW treatments (metsulfuron, bensulfuron and cyclosulfomuron) and sequential applications of molinate (IW) followed by ADW applications of MCPA, cyhalofop, bentazon, or triclopyr. One IW penoxsulam application was sufficient to achieve broad-spectrum control: Echinochloa spp. (100% control), A.plantago-aquatica (80 to 100%), Schoenoplectus mucronatus (50 to 80%), and Cyperus difformis (80 to 100%). Rice yields in penoxsulam-treated plots were 30 to 56% higher than in the untreated controls. Yields with penoxsulam IW (all rates) were similar (P>0.05) to those obtained using molinate (IW) followed by ADW applications of bentazon or MCPA. Although penoxsulam is an ALS inhibitor, it controlled A. plantago-aquatica resistant to metsulfuron and bensulfuron.
Chilean Journal of Agricultural Research | 2010
Marcelo Kogan; Claudio Alister
Under Chilean conditions the lack of weed control at forest tree establishment results in an average of at least 60% less biomass accumulation during the first year of growth of radiate pine or eucaliptus, and glyphosate offers a series of advantages in forestry weed management because its activity in both herbaceous weed groups, monocots and dicots, as well as annuals, biennials and perennials. Also, its efficacy in woody undesirable vegetation makes glyphosate a very important herbicide that can be applied to control herbaceous and woody weeds as pre-planting and during the second or third years of trees growth as strip applications. The aim of this review is to discuss the main uses of glyphosate in reforestation worldwide, during the first 2 yr after tree establishment, as broadcast application over the top of the forest trees and the most important factors that could affect glyphosate efficacy as a forest herbicide, like weed growth stage, application technique, volume and water quality, rainfastness, dew effect and the use of extra adjuvant with formulated glyphosate.
Food Chemistry | 2017
Claudio Alister; Manuel Araya; Kevin Becerra; Jorge Saavedra; Marcelo Kogan
The aim of this study was to evaluate the effect of pesticide formulations and fruit growth stages on the Pre-harvest Interval Period (PHI). Results showed that pesticide formulations did not affect the initial deposit and dissipation rate. However, the fruit growth stage at the application time showed a significant effect on the above-mentioned parameters. Fruit diameter increases in one millimeter pesticide dissipation rates were reduced in -0.033mgkg-1day-1 (R2=0.87; p<0.001) for grapes and -0.014mgkg-1day-1 (R2=0.85; p<0.001) for apples. The relation between solar radiation, air humidity and temperature, and pesticide dissipation rates were dependent on fruit type. PHI could change according to the application time, because of the initial amount of pesticide deposit in the fruits and change in the dissipation rates. Because Maximum Residue Level are becoming more restrictive, it is more important to consider the fruit growth stage effects on pesticide when performing dissipation studies to define PHI.
Food Chemistry | 2018
Claudio Alister; Manuel Araya; Kevin Becerra; Christian Volosky; Jorge Saavedra; Marcelo Kogan
The aim of this study was to determine the insecticide residue processing factor (PF) from plums to prunes and the effect of the industrial processing of prunes residue concentrations. Our results show an increase of insecticide concentrations during plum dehydration that is explained by fruit water loss; however, the normalized insecticide residue concentration, based on plum dry weights to compensate dehydration, was reduced. The water washing and tenderizing of prunes produced insecticide residue reductions of 22.9 ± 4.5% and 21.9 ± 4.2%, respectively. PF were: 1.157, 1.872, 1.316, 0.192, 2.198, 0.775 and 0.156 for buprofezin, l-cyhalothrin, spirodiclofen, indoxacarb, acetamiprid, imidacloprid and emamectin benzoate, respectively, being directly related to water solubility, aqueous hydrolysis and degradation point and inversely related to molecular mass and melting point. In plums for the dehydrated agroindustry the final product is prunes, therefore, it is crucial to consider the PF to determine the specific preharvest interval for this important agroindustry.
Weed Biology and Management | 2004
Alejandro Pérez; Claudio Alister; Marcelo Kogan
Journal of Contaminant Hydrology | 2007
Francisco Suárez; Jaime Bachmann; José F. Muñoz; Cristian Ortiz; Scott W. Tyler; Claudio Alister; Marcelo Kogan