Claudio Cabello-Verrugio
Andrés Bello National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudio Cabello-Verrugio.
Journal of Biological Chemistry | 2007
Claudio Cabello-Verrugio; Enrique Brandan
Transforming growth factor-β (TGF-β) is a multifunctional cytokine that signals to the nucleus through cell surface transmembrane receptors with serine/threonine kinase activity and cytoplasmic effectors, including Smad proteins. Here we describe two novel modulators of this pathway, lipoprotein-receptor related protein (LRP-1) and decorin. Decorin null (Dcn null) myoblasts showed a diminished TGF-β response that is restored by decorin re-expression. Importantly, this reactivation occurs without changes in the binding to TGF-β receptors, Smad protein phosphorylation, or Smad-4 nuclear translocation. In wild type myoblasts, inhibition of decorin binding to LRP-1 and depletion of LRP-1 inhibited TGF-β response to levels similar to those observed in Dcn null myoblasts. Re-expression of decorin in Dcn null myoblasts cannot restore TGF-β response if the Smad pathway or phosphatidylinositol 3-kinase activity is inhibited, suggesting that this LRP-1-decorin modulatory pathway requires activation of the Smad pathway by TGF-β and involves phosphatidylinositol 3-kinase activity. This work unveils a new regulatory mechanism for TGF-β signaling by decorin and LRP-1.
Human Molecular Genetics | 2014
María José Acuña; Patrizia Pessina; Hugo C. Olguín; Daniel Cabrera; Carlos P. Vio; Michael Bader; Pura Muñoz-Cánoves; Robson A.S. Santos; Claudio Cabello-Verrugio; Enrique Brandan
Duchenne muscular dystrophy (DMD) is the most common inherited neuromuscular disease, and is characterized by the lack of dystrophin, muscle wasting, increased transforming growth factor (TGF)-β Smad-dependent signalling and fibrosis. Acting via the Mas receptor, angiotensin-1-7 [Ang-(1-7)], is part of the renin-angiotensin system, with the opposite effect to that of angiotensin II. We hypothesized that the Ang-(1-7)/Mas receptor axis might protect chronically damaged tissues as in skeletal muscle of the DMD mouse model mdx. Infusion or oral administration of Ang-(1-7) in mdx mice normalized skeletal muscle architecture, decreased local fibrosis and improved muscle function in vitro and in vivo. These positive effects were mediated by the inhibition of TGF-β Smad signalling, which in turn led to reduction of the pro-fibrotic microRNA miR-21 concomitant with a reduction in the number of TCF4 expressing fibroblasts. Mdx mice infused with Mas antagonist (A-779) and mdx deficient for the Mas receptor showed highly deteriorated muscular architecture, increased fibrosis and TGF-β signalling with diminished muscle strength. These results suggest that this novel compound Ang-(1-7) might be used to improve quality of life and delay death in individuals with DMD and this drug should be investigated in further pre-clinical trials.
Journal of Cellular Physiology | 2008
Cecilia Vial; Lidia Miriam Zúñiga; Claudio Cabello-Verrugio; Pablo Cañón; Ricardo Fadic; Enrique Brandan
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes of different tissues. Connective tissue growth factor (CTGF) seems to be involved in the fibrotic response. Several muscular dystrophies are characterized by a progressive weakness and wasting of the musculature, and by extensive fibrosis. However, the exact role of CTGF in skeletal muscle is unknown. Here we show that myoblasts and myotubes are able to synthesize CTGF in response to transforming growth factor type‐β (TGF‐β) and lysophosphatidic acid (LPA). CTGF induced several ECM constituents such as fibronectin, collagen type I and α4, 5, 6, and β1 integrin subunits in myoblasts and myotubes. CTGF had an important inhibitory effect on muscle differentiation evaluated by the decrease in the nuclear translocation of the early muscle regulatory factor myogenin and myosin. Remarkable, CTGF treatment of myoblasts induced their dedifferentiation, characterized by down regulating MyoD and desmin, two markers of committed myoblasts, together with a strong reorganization of cytoskeletal filaments. These results provide novel evidence for the underlying mechanisms and participation of skeletal muscle cells in the synthesis and role of CTGF inducing fibrosis, inhibiting myogenesis and dedifferentiating myoblasts. J. Cell. Physiol. 215: 410–421, 2008.
The Journal of Pathology | 2011
María Gabriela Morales; Claudio Cabello-Verrugio; Cristian Santander; Daniel Cabrera; Roel Goldschmeding; Enrique Brandan
Muscular dystrophies are diseases characterized by muscle weakness together with cycles of degeneration and regeneration of muscle fibres, resulting in a progressive decrease of muscle mass, diminished muscle force generation and an increase in fibrosis. Fibrotic disorders are the endpoint of many chronic diseases in different tissues, where accumulation of the extracellular matrix (ECM) occurs. Connective tissue growth factor CTGF/CCN2, which is over‐expressed in muscular dystrophies, plays a major role in many progressive scarring conditions. To test the hypothesis that CTGF might not only contribute conversion of already damaged muscle into scar tissue, but that it could by itself also directly contribute to skeletal muscle deterioration, we evaluated the effect of CTGF over‐expression in tibialis anterior muscle of wild‐type mice, using an adenovirus containing the CTGF mouse sequence (Ad–mCTGF). CTGF over‐expression induced extensive skeletal muscle damage, which was followed by a massive regeneration of the damaged muscle, as evidenced by increased embryonic myosin and fibres with centrally located nuclei. It also induced strong fibrosis with increased levels of fibronectin, collagen, decorin and α‐smooth muscle actin (α‐SMA). Moreover, CTGF over‐expression caused a decrease of the specific isometric contractile force. Strikingly, when CTGF over‐expression stopped, the entire phenotype proved to be reversible, in parallel with normalization of CTGF levels. Thus, CTGF not merely acts downstream of muscle injury but also contributes directly to the deterioration of skeletal muscle phenotype and function. Moreover, normalization of expression levels led to spontaneous reversal of the CTGF‐induced phenotype and to full recovery of muscle structure. These observations underscore the importance of CTGF in the pathophysiology of muscular dystrophies and suggest that targeting CTGF might have significant potential in the development of novel therapies for Duchenne muscular dystrophy and related diseases. Copyright
Human Molecular Genetics | 2013
María Gabriela Morales; Jaime Gutiérrez; Claudio Cabello-Verrugio; Daniel Cabrera; Kenneth E. Lipson; Roel Goldschmeding; Enrique Brandan
In Duchenne muscular dystrophy (DMD) and the mdx mouse model, the absence of the cytoskeletal protein dystrophin causes defective anchoring of myofibres to the basal lamina. The resultant myofibre degeneration and necrosis lead to a progressive loss of muscle mass, increased fibrosis and ultimately fatal weakness. Connective tissue growth factor (CTGF/CCN-2) is critically involved in several chronic fibro-degenerative diseases. In DMD, the role of CTGF might extend well beyond replacement fibrosis secondary to loss of muscle fibres, since its overexpression in skeletal muscle could by itself induce a dystrophic phenotype. Using two independent approaches, we here show that mdx mice with reduced CTGF availability do indeed have less severe muscular dystrophy. Mdx mice with hemizygous CTGF deletion (mdx-Ctgf+/-), and mdx mice treated with a neutralizing anti-CTGF monoclonal antibody (FG-3019), performed better in an exercise endurance test, had better muscle strength in isolated muscles and reduced skeletal muscle impairment, apoptotic damage and fibrosis. Transforming growth factor type-β (TGF-β), pERK1/2 and p38 signalling remained unaffected during CTGF suppression. Moreover, both mdx-Ctgf+/- and FG-3019 treated mdx mice had improved grafting upon intramuscular injection of dystrophin-positive satellite cells. These findings reveal the potential of targeting CTGF to reduce disease progression and to improve cell therapy in DMD.
Journal of Biological Chemistry | 2006
Enrique Brandan; Claudio Retamal; Claudio Cabello-Verrugio; María Paz Marzolo
Decorin is a small leucine-rich proteoglycan that modulates the activity of transforming growth factor type β and other growth factors and thereby influences the processes of proliferation and differentiation in a wide array of physiological and pathological reactions. Hence, understanding the regulatory mechanisms of decorin activity has broad implications. Here we report that the extracellular levels of decorin are controlled by receptor-mediated catabolism, involving the low density lipoprotein receptor family member, low density lipoprotein receptor-related protein (LRP). We show that decorin is endocytosed and degraded by C2C12 myoblast cells and that both processes are blocked by suppressing LRP expression using short interfering RNA. The same occurs with CHO cells, but not with CHO cells genetically deficient in LRP. Finally, we show that LRP-null CHO cells, transfected to express mini-LRP polypeptides containing either the second or fourth LRP ligand-binding domains, carry out decorin endocytosis and lysosomal degradation. These findings point to LRP-mediated catabolism as a new control pathway for the biological activities of decorin, specifically for its ability to influence extracellular matrix signaling.
The International Journal of Biochemistry & Cell Biology | 2012
María Gabriela Morales; Yaneisi Vazquez; María José Acuña; Juan C. Rivera; Felipe Simon; José Diego Salas; Joel Álvarez Ruf; Enrique Brandan; Claudio Cabello-Verrugio
Fibrotic disorders are typically characterised by excessive connective tissue and extracellular matrix (ECM) deposition that preclude the normal healing of different tissues. Several skeletal muscle dystrophies are characterised by extensive fibrosis. Among the factors involved in skeletal muscle fibrosis is angiotensin II (Ang-II), a key protein of the renin-angiotensin system (RAS). We previously demonstrated that myoblasts responded to Ang-II by increasing the ECM protein levels mediated by AT-1 receptors, implicating an Ang-II-induced reactive oxygen species (ROS) by a NAD(P)H oxidase-dependent mechanism. In this paper, we show that in myoblasts, Ang-II induced the increase of transforming growth factor beta 1 (TGF-β1) and connective tissue growth factor (CTGF) expression through its AT-1 receptor. This effect is dependent of the NAD(P)H oxidase (NOX)-induced ROS, as indicated by a decrease of the expression of both pro-fibrotic factors when the ROS production was inhibited via the NOX inhibitor apocynin. The increase in pro-fibrotic factors levels was paralleled by enhanced p38MAPK and ERK1/2 phosphorylation in response to Ang-II. However, only the p38MAPK activity was critical for the Ang-II-induced fibrotic effects, as indicated by the decrease in the Ang-II-induced TGF-β1 and CTGF expression and fibronectin levels by SB-203580, an inhibitor of the p38MAPK, but not by U0126, an inhibitor of ERK1/2 phosphorylation. Furthermore, we showed that the Ang-II-dependent p38MAPK activation, but not the ERK1/2 phosphorylation, was necessary for the NOX-derived ROS. In addition, we demonstrated that TGF-β1 expression was required for the Ang-II-induced pro-fibrotic effects evaluated by using SB-431542, an inhibitor of TGF-βRI kinase activity, and by knocking down TGF-β1 levels by shRNA technique. These results strongly suggest that the fibrotic response to Ang-II is mediated by the AT-1 receptor and requires the p38MAPK phosphorylation, NOX-induced ROS, and TGF-β1 expression increase mediated by Ang-II in skeletal muscle cells.
Journal of Cellular and Molecular Medicine | 2012
Claudio Cabello-Verrugio; María Gabriela Morales; Daniel Cabrera; Carlos P. Vio; Enrique Brandan
Connective tissue growth factor (CTGF/CCN‐2) is mainly involved in the induction of extracellular matrix (ECM) proteins. The levels of CTGF correlate with the degree and severity of fibrosis in many tissues, including dystrophic skeletal muscle. The CTGF overexpression in tibialis anterior skeletal muscle using an adenoviral vector reproduced many of the features observed in dystrophic muscles including muscle damage and regeneration, fibrotic response and decrease in the skeletal muscle strength. The renin–angiotensin system is involved in the genesis and progression of fibrotic diseases through its main fibrotic components angiotensin‐II and its transducer receptor AT‐1. The use of AT‐1 receptor blockers (ARB) has been shown to decrease fibrosis. In this paper, we show the effect of AT‐1 receptor blockade on CTGF‐dependent biological activity in skeletal muscle cells as well as the response to CTGF overexpression in normal skeletal muscle. Our results show that in myoblasts ARB decreased CTGF‐mediated increase of ECM protein levels, extracellular signal regulated kinases 1/2 (ERK‐1/2) phosphorylation and stress fibres formation. In tibialis anterior muscle overexpressing CTGF using an adenovirus, ARB treatment decreased CTGF‐mediated increase of ECM molecules, α‐SMA and ERK‐1/2 phosphorylation levels. Quite remarkable, ARB was able to prevent the loss of contractile force of tibialis anterior muscles overexpressing CTGF. Finally, we show that ARB decreased the levels of fibrotic proteins, CTGF and ERK‐1/2 phosphorylation augmented in a dystrophic skeletal muscle from mdx mice. We propose that ARB is a novel pharmacological tool that can be used to decrease the fibrosis induced by CTGF in skeletal muscle associated with muscular dystrophies.
Biochemical and Biophysical Research Communications | 2011
Claudio Cabello-Verrugio; María José Acuña; María Gabriela Morales; Alvaro Becerra; Felipe Simon; Enrique Brandan
Fibrotic disorders are typified by excessive connective tissue and extracellular matrix (ECM) deposition that precludes normal healing processes in different tissues. Angiotensin-II (Ang-II) is involved in the fibrotic response. Several muscular dystrophies are characterized by extensive fibrosis. However, the exact role of Ang-II in skeletal muscle fibrosis is unknown. Here we show that myoblasts responded to Ang-II by increasing protein levels of connective tissue growth factor (CTGF/CCN2), collagen-III and fibronectin. These Ang-II-induced pro-fibrotic effects were mediated by AT-1 receptors. Remarkably, Ang-II induced reactive oxygen species (ROS) via a NAD(P)H oxidase-dependent mechanism, as shown by inhibition of ROS production via the NAD(P)H oxidase inhibitors diphenylene iodonium (DPI) and apocynin. This increase in ROS is critical for Ang-II-induced fibrotic effects, as indicated by the decrease in Ang-II-induced CTGF and fibronectin levels by DPI and apocynin. We also show that Ang-II-induced ROS production and fibrosis require PKC activity as indicated by the generic PKC inhibitor chelerythrine. These results strongly suggest that the fibrotic response induced by Ang-II is mediated by AT-1 receptor and requires NAD(P)H-induced ROS in skeletal muscle cells.
Cell and Tissue Research | 2013
María Gabriela Morales; Daniel Cabrera; Carlos Cespedes; Carlos P. Vio; Yaneisi Vazquez; Enrique Brandan; Claudio Cabello-Verrugio
The renin-angiotensin system (RAS), through angiotensin II and the angiotensin-converting enzyme (ACE), is involved in the genesis and progression of fibrotic diseases characterized by the replacement of normal tissue by an accumulation of an extracellular matrix (ECM). Duchenne muscular dystrophy (DMD) presents fibrosis and a decrease in muscle strength produced by chronic damage. The mdx mouse is a murine model of DMD and develops the same characteristics as dystrophic patients when subjected to chronic exercise. The connective tissue growth factor (CTGF/CCN2) and transforming growth factor type beta (TGF-β), which are overexpressed in muscular dystrophies, play a major role in many progressive scarring conditions. We have tested the hypothesis that ACE inhibition decreases fibrosis in dystrophic skeletal muscle by treatment of mdx mice with the ACE inhibitor enalapril. Both sedentary and exercised mdx mice treated with enalapril showed improvement in gastrocnemius muscle strength explained by a reduction in both muscle damage and ECM accumulation. ACE inhibition decreased CTGF expression in sedentary or exercised mdx mice and diminished CTGF-induced pro-fibrotic activity in a model of CTGF overexpression by adenoviral infection. Enalapril did not have an effect on TGF-β1 expression or its signaling activity in sedentary or exercised dystrophic mice. Thus, ACE inhibition might improve muscle strength and decrease fibrosis by diminishing specifically CTGF expression and activity without affecting TGF-β1 signaling. Our data provide insights into the pathogenic events in dystrophic muscle. We propose ACE as a target for developing therapies for DMD and related diseases.