María Gabriela Morales
Andrés Bello National University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by María Gabriela Morales.
Laboratory Investigation | 2014
Ignacio Montorfano; Alvaro Becerra; Roberto Cerro; César Echeverría; Elizabeth Sáez; María Gabriela Morales; Ricardo Fernández; Claudio Cabello-Verrugio; Felipe Simon
During the pathogenesis of systemic inflammation, reactive oxygen species (ROS) circulate in the bloodstream and interact with endothelial cells (ECs), increasing intracellular oxidative stress. Although endothelial dysfunction is crucial in the pathogenesis of systemic inflammation, little is known about the effects of oxidative stress on endothelial dysfunction. Oxidative stress induces several functions, including cellular transformation. A singular process of cell conversion is tendothelial-to-mesenchymal transition, in which ECs become myofibroblasts, thus losing their endothelial properties and gaining fibrotic behavior. However, the participation of oxidative stress as an inductor of conversion of ECs into myofibroblasts is not known. Thus, we studied the role played by oxidative stress in this conversion and investigated the underlying mechanism. Our results show that oxidative stress induces conversion of ECs into myofibroblasts through decreasing the levels of endothelial markers and increasing those of fibrotic and ECM proteins. The underlying mechanism depends on the ALK5/Smad3/NF-κB pathway. Oxidative stress induces the expression and secretion of TGF-β1 and TGF-β2 and p38 MAPK phosphorylation. Downregulation of TGF-β1 and TGF-β2 by siRNA technology abolished the H2O2-induced conversion. To our knowledge, this is the first report showing that oxidative stress is able to induce conversion of ECs into myofibroblasts via TGF-β secretion, emerging as a source for oxidative stress-based vascular dysfunction. Thus, oxidative stress emerges as a decisive factor in inducing conversion of ECs into myofibroblasts through a TGF-β-dependent mechanism, changing the ECs protein expression profile, and converting normal ECs into pathological ones. This information will be useful in designing new and improved therapeutic strategies against oxidative stress-mediated systemic inflammatory diseases.
Clinical Science | 2015
Franco Cisternas; María Gabriela Morales; Carla Meneses; Felipe Simon; Enrique Brandan; Johanna Abrigo; Yaneisi Vazquez; Claudio Cabello-Verrugio
Skeletal muscle atrophy is a pathological condition characterized by the loss of strength and muscle mass, an increase in myosin heavy chain (MHC) degradation and increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. Angiotensin II (AngII) induces muscle atrophy. Angiotensin-(1-7) [Ang-(1-7)], through its receptor Mas, produces the opposite effects than AngII. We assessed the effects of Ang-(1-7) on the skeletal muscle atrophy induced by AngII. Our results show that Ang-(1-7), through Mas, prevents the effects induced by AngII in muscle gastrocnemius: the decrease in the fibre diameter, muscle strength and MHC levels and the increase in atrogin-1 and MuRF-1. Ang-(1-7) also induces AKT phosphorylation. In addition, our analysis in vitro using C2C12 myotubes shows that Ang-(1-7), through a mechanism dependent on Mas, prevents the decrease in the levels of MHC and the increase in the expression of the atrogin-1 and MuRF-1, both induced by AngII. Ang-(1-7) induces AKT phosphorylation in myotubes; additionally, we demonstrated that the inhibition of AKT with MK-2206 decreases the anti-atrophic effects of Ang-(1-7). Thus, we demonstrate for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by AngII through a mechanism dependent on the Mas receptor, which involves AKT activity. Our study indicates that Ang-(1-7) is novel molecule with a potential therapeutical use to improve muscle wasting associated, at least, with pathologies that present high levels of AngII.
Pflügers Archiv: European Journal of Physiology | 2015
Carla Meneses; María Gabriela Morales; Johanna Abrigo; Felipe Simon; Enrique Brandan; Claudio Cabello-Verrugio
Angiotensin-(1–7) [Ang (1–7)] is a peptide belonging to the non-classical renin-angiotensin system (RAS). Ang (1–7), through its receptor Mas, has an opposite action to angiotensin II (Ang II), the typical peptide of the classical RAS axis. Ang II produces skeletal muscle atrophy, a pathological condition characterised by the loss of strength and muscle mass. A feature of muscle atrophy is the decrease of the myofibrillar proteins produced by the activation of the ubiquitin-proteasome pathway (UPP), evidenced by the increase in the expression of two muscle-specific ubiquitin ligases: atrogin-1 and MuRF-1. In addition, it has been described that Ang II also induces myonuclear apoptosis during muscle atrophy. We assessed the effects of Ang (1–7) and Mas participation on myonuclear apoptosis during skeletal muscle atrophy induced by Ang II. Our results show that Ang (1–7), through Mas, prevents the effects induced by Ang II in the diaphragm muscles and decreases several events associated with apoptosis in the diaphragm (increased apoptotic nuclei, increased expression of caspase-8 and caspase-9, increased caspase-3 activity and increased Bax/Bcl-2 ratio). Concomitantly, Ang (1–7) also attenuates the decrease in fibre diameter and muscle strength, and prevents the increase in atrogin-1 and MuRF-1 during the muscle wasting induced by Ang II. Interestingly, these effects of Ang (1–7) are dependent on the Mas receptor. Thus, we demonstrated for the first time that Ang (1–7) prevents myonuclear apoptosis during the recovery of skeletal muscle atrophy induced by Ang II.
Medicinal Research Reviews | 2015
Claudio Cabello-Verrugio; María Gabriela Morales; Juan Carlos Rivera; Daniel Cabrera; Felipe Simon
Skeletal muscle is a tissue that shows the most plasticity in the body; it can change in response to physiological and pathological stimuli. Among the diseases that affect skeletal muscle are myopathy‐associated fibrosis, insulin resistance, and muscle atrophy. A common factor in these pathologies is the participation of the renin‐angiotensin system (RAS). This system can be functionally separated into the classical and nonclassical RAS axis. The main components of the classical RAS pathway are angiotensin‐converting enzyme (ACE), angiotensin II (Ang‐II), and Ang‐II receptors (AT receptors), whereas the nonclassical axis is composed of ACE2, angiotensin 1–7 [Ang (1–7)], and the Mas receptor. Hyperactivity of the classical axis in skeletal muscle has been associated with insulin resistance, atrophy, and fibrosis. In contrast, current evidence supports the action of the nonclassical RAS as a counter‐regulator axis of the classical RAS pathway in skeletal muscle. In this review, we describe the mechanisms involved in the pathological effects of the classical RAS, advances in the use of pharmacological molecules to inhibit this axis, and the beneficial effects of stimulation of the nonclassical RAS pathway on insulin resistance, atrophy, and fibrosis in skeletal muscle.
Histochemistry and Cell Biology | 2015
María Gabriela Morales; Johanna Abrigo; Carla Meneses; Franco Cisternas; Felipe Simon; Claudio Cabello-Verrugio
Abstract Skeletal muscle atrophy during sepsis, immobilization, and chronic diseases is characterized by an increase in expression and activity of the muscle-specific ubiquitin 3 ligases atrogin-1 and MuRF-1. The classical renin–angiotensin system (RAS), by high level of circulating angiotensin II (AngII) is directly involved in skeletal muscle wasting associated with cardiac and renal failure. Ang (1–7), a peptide belonging to the non-classical RAS system, produces effects that are opposite to AngII. The actions of Ang (1–7) are mediated by its binding and signalling through the Mas receptor. Our purpose is to assess the effects of atrophic stimuli AngII, lipopolysaccharide (LPS), and immobilization on the expression of the Mas receptor in skeletal muscle. For that we used gastrocnemius and tibialis anterior muscles of C57BL10 mice treated with AngII, LPS or subjected to unilateral hindlimb immobilization by casting. In addition, we used C2C12 myotubes incubated with AngII or LPS. We evaluated Mas expression by quantitative real-time PCR, Western blot immunohistochemical analysis. Skeletal muscle atrophy was corroborated by the expression of atrogin-1 and MuRF-1 and the fibre diameter. Our results show that Mas receptor expression was increased by AngII or LPS in vitro and in vivo, and upregulated by immobilization. The increase of the Mas expression was concomitantly with the upregulation of atrogin-1 and MuRF-1 and the reduction of the fibre diameter. These results from studies in vitro and in vivo demonstrate for the first time that the Mas receptor is increased under atrophic stimulus and suggest that the non-classical RAS system could have an important role in muscle wasting.
Clinical Science | 2015
María Gabriela Morales; Hugo C. Olguín; Gabriella Di Capua; Enrique Brandan; Felipe Simon; Claudio Cabello-Verrugio
Skeletal muscle atrophy induced during sepsis syndrome produced by endotoxin in the form of LPS (lipopolysaccharide), is a pathological condition characterized by the loss of strength and muscle mass, an increase in MHC (myosin heavy chain) degradation, and an increase in the expression of atrogin-1 and MuRF-1 (muscle-specific RING-finger protein 1), two ubiquitin E3 ligases belonging to the ubiquitin-proteasome system. Ang-(1-7) [Angiotensin-(1-7)], through its Mas receptor, has beneficial effects in skeletal muscle. We evaluated in vivo the role of Ang-(1-7) and Mas receptor on the muscle wasting induced by LPS injection into C57BL/10J mice. In vitro studies were performed in murine C2C12 myotubes and isolated myofibres from EDL (extensor digitorum longus) muscle. In addition, the participation of p38 MAPK (mitogen-activated protein kinase) in the Ang-(1-7) effect on the LPS-induced muscle atrophy was evaluated. Our results show that Ang-(1-7) prevents the decrease in the diameter of myofibres and myotubes, the decrease in muscle strength, the diminution in MHC levels and the induction of atrogin-1 and MuRF-1 expression, all of which are induced by LPS. These effects were reversed by using A779, a Mas antagonist. Ang-(1-7) exerts these anti-atrophic effects at least in part by inhibiting the LPS-dependent activation of p38 MAPK both in vitro and in vivo. We have demonstrated for the first time that Ang-(1-7) counteracts the skeletal muscle atrophy induced by endotoxin through a mechanism dependent on the Mas receptor that involves a decrease in p38 MAPK phosphorylation. The present study indicates that Ang-(1-7) is a novel molecule with a potential therapeutic use to improve muscle wasting during endotoxin-induced sepsis syndrome.
Disease Models & Mechanisms | 2016
María Gabriela Morales; Johanna Abrigo; María José Acuña; Robson A.S. Santos; Michael Bader; Enrique Brandan; Felipe Simon; Hugo C. Olguín; Daniel Cabrera; Claudio Cabello-Verrugio
ABSTRACT Immobilization is a form of disuse characterized by a loss of strength and muscle mass. Among the main features are decreased IGF-1/Akt signalling and increased ubiquitin-proteasome pathway signalling, which induce greater myosin heavy chain degradation. Activation of the classical renin-angiotensin system (RAS) causes deleterious effects in skeletal muscle, including muscle wasting. In contrast, angiotensin-(1-7) [Ang-(1-7)], a peptide of the non-classical RAS, produces beneficial effects in skeletal muscle. However, the role of Ang-(1-7) in skeletal muscle disuse atrophy and independent of classical RAS activation has not been evaluated. Therefore, we assessed the functions of Ang-(1-7) and the Mas receptor in disuse muscle atrophy in vivo using unilateral cast immobilization of the hind limb in male, 12-week-old wild-type (WT) and Mas-knockout (Mas KO) mice for 1 and 14 days. Additionally, we evaluated the participation of IGF-1/IGFR-1/Akt signalling and ubiquitin-proteasome pathway expression on the effects of Ang-(1-7) immobilization-induced muscle atrophy. Our results found that Ang-(1-7) prevented decreased muscle strength and reduced myofiber diameter, myosin heavy chain levels, and the induction of atrogin-1 and MuRF-1 expressions, all of which normally occur during immobilization. Analyses indicated that Ang-(1-7) increases IGF-1/IGFR-1/Akt pathway signalling through IGFR-1 and Akt phosphorylation, and the concomitant activation of two downstream targets of Akt, p70S6K and FoxO3. These anti-atrophic effects of Ang-(1-7) were not observed in Mas KO mice, indicating crucial participation of the Mas receptor. This report is the first to propose anti-atrophic effects of Ang-(1-7) via the Mas receptor and the participation of the IGF-1/IGFR-1/Akt/p70S6K/FoxO3 mechanism in disuse skeletal muscle atrophy. Summary: In this article, the authors demonstrate that a peptide with actions mainly in the cardiovascular system prevents the skeletal muscle damage induced by disuse.
Phytomedicine | 2015
Johanna Abrigo; María Gabriela Morales; Felipe Simon; Daniel Cabrera; Gabriella Di Capua; Claudio Cabello-Verrugio
BACKGROUND Pure apocynin, which can be traditionally isolated and purified from several plant species such as Picrorhiza kurroa Royle ex Benth (Scrophulariaceae), acts as an inhibitor of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (NOX) activity inhibiting its production of reactive oxygen species (ROS). Transforming growth factor type beta 1 (TGF-β1) is a growth factor that produces inhibition of myogenesis, diminution of regeneration and induction of atrophy in skeletal muscle. The typical signalling that is activated by TGF-β involves the Smad pathway. PURPOSE To evaluate the effect of TGF-β and the effect of apocynin on TGF-β1 expression in skeletal muscle cells. STUDY DESIGN Controlled laboratory study. In vitro assays were performed with C2C12 cells incubated with TGF-β1 in presence or absence of apocynin (NOX inhibitor), SB525334 (TGF-β-receptor I inhibitor), or chelerythrine (PKC inhibitor). METHODS TGF-β1 and atrogin-1 expression was evaluated by RT-qPCR and/or ELISA; Smad3 phosphorylation by western blot; Smad4 nuclear translocation by indirect immunofluorescence; and ROS levels by DCF probe fluorescent measurements. RESULTS We show that myoblasts respond to TGF-β1 by increasing its own gene expression in a time- and dose-dependent fashion which was abolished by SB525334 and siRNA for Smad2/3. TGF-β1 also induced ROS. Remarkably, apocynin inhibited the TGF-β1 induced ROS as well as the autoinduction of TGF-β1 gene expression. We also show that TGF-β-induced ROS production and TGF-β1 expression require PKC activity as indicated by the inhibition using chelerythrine. CONCLUSION These results strongly suggest that TGF-β induces its own expression through a TGF-β-receptor/Smad-dependent mechanism and apocynin is able to inhibit this process, suggesting that requires NOX-induced ROS in skeletal muscle cells.
Biofactors | 2015
Catalina Cofré; María José Acuña; Osvaldo Contreras; María Gabriela Morales; Cecilia Riquelme; Claudio Cabello-Verrugio; Enrique Brandan
Duchenne muscular dystrophy is a genetic disorder characterized by myofiber degeneration, muscle weakness, and increased fibrosis. Transforming growth factor type-β (TGF-β), a central mediator of fibrosis, is upregulated in fibrotic diseases. Angiotensin-(1-7) [Ang-(1-7)] is a peptide with actions that oppose those of angiotensin-II (Ang II). Ang-(1-7) effects are mediated by the Mas receptor. Treatment with Ang-(1-7) produce positive effects in the mdx mouse, normalizing skeletal muscle architecture, decreasing local fibrosis, and fibroblasts, and improving muscle function. Mdx mice deficient for the Mas receptor showed the opposite effects. To identify the cell type(s) responsible for Mas receptor expression, and to characterize whether profibrotic effectors had any effect on its expression, we determined the effect of profibrotic agents on Mas expression. TGF-β, but not connective tissue growth factor or Ang-II, reduced the expression of Mas receptor in fibroblasts isolated from skeletal muscle cells and fibroblasts from two established cell lines. In contrast, no effects were observed in myoblasts and differentiated myotubes. This inhibition was mediated by the Smad-dependent (canonical) and the PI3K and MEK1/2 (noncanonical) TGF-β signaling pathways. When both canonical and noncanonical inhibitors of the TGF-β-dependent pathways were added together, the inhibitory effect of TGF-β on Mas expression was lost. The decrease in Mas receptor induced by TGF-β in fibroblasts reduced the Ang-(1-7) mediated stimulation of phosphorylation of AKT pathway proteins. These results suggest that reduction of Mas receptor in fibroblasts, by TGF-β, could increase the fibrotic phenotype observed in dystrophic skeletal muscle decreasing the beneficial effect of Ang-(1-7).
Clinical Science | 2014
María Gabriela Morales; Johanna Abrigo; Carla Meneses; Felipe Simon; Franco Cisternas; Juan Carlos Rivera; Yaneisi Vazquez; Claudio Cabello-Verrugio