Claudio Inostroza-Blancheteau
University of La Frontera
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Claudio Inostroza-Blancheteau.
Molecular Biology Reports | 2012
Claudio Inostroza-Blancheteau; Zed Rengel; Miren Alberdi; María de la Luz Mora; Felipe Aquea; Patricio Arce-Johnson; Marjorie Reyes-Díaz
Aluminum (Al) toxicity is a primary limitation to plant growth on acid soils. Root meristems are the first site for toxic Al accumulation, and therefore inhibition of root elongation is the most evident physiological manifestation of Al toxicity. Plants may resist Al toxicity by avoidance (Al exclusion) and/or tolerance mechanisms (detoxification of Al inside the cells). The Al exclusion involves the exudation of organic acid anions from the root apices, whereas tolerance mechanisms comprise internal Al detoxification by organic acid anions and enhanced scavenging of free oxygen radicals. One of the most important advances in understanding the molecular events associated with the Al exclusion mechanism was the identification of the ALMT1 gene (Al-activated malate transporter) in Triticum aestivum root cells, which codes for a plasma membrane anion channel that allows efflux of organic acid anions, such as malate, citrate or oxalate. On the other hand, the scavenging of free radicals is dependent on the expression of genes involved in antioxidant defenses, such as peroxidases (e.g. in Arabidopsisthaliana and Nicotiana tabacum), catalases (e.g. in Capsicum annuum), and the gene WMnSOD1 from T. aestivum. However, other recent findings show that reactive oxygen species (ROS) induced stress may be due to acidic (low pH) conditions rather than to Al stress. In this review, we summarize recent findings regarding molecular and physiological mechanisms of Al toxicity and resistance in higher plants. Advances have been made in understanding some of the underlying strategies that plants use to cope with Al toxicity. Furthermore, we discuss the physiological and molecular responses to Al toxicity, including genes involved in Al resistance that have been identified and characterized in several plant species. The better understanding of these strategies and mechanisms is essential for improving plant performance in acidic, Al-toxic soils.
Trends in Plant Science | 2014
Adriano Nunes-Nesi; Danielle Santos Brito; Claudio Inostroza-Blancheteau; Alisdair R. Fernie; Wagner L. Araújo
The majority of soils in tropical and subtropical regions are acidic, rendering the soil a major limitation to plant growth and food production in many developing countries. High concentrations of soluble aluminum cations, particularly Al3+, are largely responsible for reducing root elongation and disrupting nutrient and water uptake. Two mechanisms, namely, the exclusion mechanism and tolerance mechanism, have been proposed to govern Al3+ resistance in plants. Both mechanisms are related to mitochondrial activity as well as to mitochondrial metabolism and organic acid transport. Here, we review the considerable progress that has been made towards developing an understanding of the physiological role of mitochondria in the aluminum response and discuss the potential for using this knowledge in next-generation engineering.
BioMed Research International | 2015
Ximena Alvarez-Gerding; Rowena Cortés-Bullemore; Consuelo Medina; Jesús L. Romero-Romero; Claudio Inostroza-Blancheteau; Felipe Aquea; Patricio Arce-Johnson
Citrus plants are widely cultivated around the world and, however, are one of the most salt stress sensitive crops. To improve salinity tolerance, transgenic Carrizo citrange rootstocks that overexpress glyoxalase I and glyoxalase II genes were obtained and their salt stress tolerance was evaluated. Molecular analysis showed high expression for both glyoxalase genes (BjGlyI and PgGlyII) in 5H03 and 5H04 lines. Under control conditions, transgenic and wild type plants presented normal morphology. In salinity treatments, the transgenic plants showed less yellowing, marginal burn in lower leaves and showed less than 40% of leaf damage compared with wild type plants. The transgenic plants showed a significant increase in the dry weight of shoot but there are no differences in the root and complete plant dry weight. In addition, a higher accumulation of chlorine is observed in the roots in transgenic line 5H03 but in shoot it was lower. Also, the wild type plant accumulated around 20% more chlorine in the shoot compared to roots. These results suggest that heterologous expression of glyoxalase system genes could enhance salt stress tolerance in Carrizo citrange rootstock and could be a good biotechnological approach to improve the abiotic stress tolerance in woody plant species.
Functional Plant Biology | 2014
Yesenia Rojas-Lillo; Miren Alberdi; Patricio Acevedo; Claudio Inostroza-Blancheteau; Zed Rengel; María de la Luz Mora; Marjorie Reyes-Díaz
Manganese (Mn2+) toxicity or UV-B radiation and their individual effects on plants have been documented previously. However, no study about the combined effect of these stresses is available. We evaluated the individual and combined effects of excess Mn2+ and UV-B radiation on physiological and biochemical parameters in two highbush blueberry (Vaccinium corymbosum L.) cultivars differing in resistance to Mn toxicity (Brigitta (resistant) and Bluegold (sensitive)). Plants grown in Hoagland nutrient solution were subjected to the following treatments: 2µM MnCl2 (control), 500µM MnCl2 (toxic Mn2+), UV-B radiation (a daily dose of 94.4kJm-2), and the combined treatment (toxic Mn2++UV-B) for 30 days. In both cultivars, the Mn2++UV-B treatment caused a more negative effect on net photosynthesis (Pn), stomatal conductance (gs), the photochemical parameters of PSII and the chl a/b ratio than the treatments with toxic Mn2+ or UV-B alone. However, Brigitta showed also a better acclimation response in Pn and gs than Bluegold at the end of the experiment. The Mn2++UV-B treatment inhibited growth, enhanced radical scavenging activity and superoxide dismutase activity, and increased the concentration of total UV-absorbing compounds, phenols and anthocyanins, mainly in Bluegold. In conclusion, Mn-resistant Brigitta showed a better acclimation response and greater resistance to the combined stress of Mn2+ toxicity and UV-B exposure than the Mn-sensitive Bluegold. An increased concentration of photoprotective compounds and enhanced resistance to oxidative stress in Brigitta could underpin increased resistance to the combined stress.
Journal of Toxicology and Environmental Health | 2017
Erico R. Carmona; Marjorie Reyes-Díaz; Jorge Parodi; Claudio Inostroza-Blancheteau
ABSTRACT Peumus boldus Mol. (“Boldo”) and Cryptocarya alba Mol. Looser (“Peumo”) are medicinal shrubs with wide geographical distribution in South America. Their leaves and fruits are commonly used in traditional medicine because they exhibit natural medicinal properties for treatment of liver disorders and rheumatism. However, there are no apparent data regarding potential protective effects on cellular genetic components. In order to examine potential mutagenic and/or antimutagenic effects of these medicinal plants, the Drosophila melanogaster (D. melanogaster) wing-spot test was employed. This assay detects a wide range of mutational events, including point mutations, deletions, certain types of chromosomal aberrations (nondisjunction), and mitotic recombination. Qualitative and quantitative analyses of phenolic and anthocyanin compounds were carried out using biochemical and high-performance liquid chromatography methodologies. In addition, the antioxidant capacity of P. boldus and C. alba leaf extracts was also analyzed. P. boldus and C. alba extracts did not induce significant mutagenic effects in the D. melanogaster model. However, simultaneous treatment of extracts concurrently with the mutagen ethyl methane sulphonate showed a decrease of mutant spots in somatic cells of D. melanogaster, indicating desmutagenic effects in this in vivo model. Flavonoids and anthocyanins were detected predominantly in the extracts, and these compounds exerted significant antioxidant capacity. The observed antimutagenic effects may be related to the presence of phytochemicals with high antioxidant capacity, such as flavonoids and antohocyanins, in the extracts.
Revista De La Ciencia Del Suelo Y Nutricion Vegetal | 2008
Claudio Inostroza-Blancheteau; Braulio Soto; Pilar Ulloa; Felipe Aquea; Marjorie Reyes-Díaz
Aluminum (Al) toxicity is one of the main factors limiting crop productivity in acid soils around the world. In cereals, this problem can affect between 30 and 40% of crop yields. One way to reduce the toxic effect of Al is to neutralize the acidity with calcareous amendments. However, this practice is demanding and not very effective. An alternative is the search for genetic variability in the genome of cropping grasses and/or their wild relatives to resist Al. The development of biotechnology and molecular genetics approach has facilitated the understanding of the physiological, genetic and molecular bases in the process of ameliorating these species. This review presents the main physiological mechanisms of Al resistance and the genetic and molecular bases that explain the degree of resistance between different cereals species.
Physiologia Plantarum | 2017
Ana Luengo Escobar; Miren Alberdi; Patricio Acevedo; Mariana Machado; Adriano Nunes-Nesi; Claudio Inostroza-Blancheteau; Marjorie Reyes-Díaz
Despite the Montreal protocol and the eventual recovery of the ozone layer over Antarctica, there are still concerns about increased levels of ultraviolet-B (UV-B) radiation in the Southern Hemisphere. UV-B induces physiological, biochemical and morphological stress responses in plants, which are species-specific and different even for closely related cultivars. In woody plant species, understanding of long-term mechanisms to cope with UV-B-induced stress is limited. Therefore, a greenhouse UV-B daily course simulation was performed for 21 days with two blueberry cultivars (Legacy and Bluegold) under UV-BBE irradiance doses of 0, 0.07 and 0.19 W m-2 . Morphological changes, photosynthetic performance, antioxidants, lipid peroxidation and metabolic features were evaluated. We found that both cultivars behaved differently under UV-B exposure, with Legacy being a UV-B-resistant cultivar. Interestingly, Legacy used a combined strategy: initially, in the first week of exposure its photoprotective compounds increased, coping with the intake of UV-B radiation (avoidance strategy), and then, increasing its antioxidant capacity. These strategies proved to be UV-B radiation dose dependent. The avoidance strategy is triggered early under high UV-B radiation in Legacy. Moreover, the rapid metabolic reprogramming capacity of this cultivar, in contrast to Bluegold, seems to be the most relevant contribution to its UV-B stress-coping strategy.
Biologia Plantarum | 2016
Marjorie Reyes-Díaz; Cristian Meriño-Gergichevich; Claudio Inostroza-Blancheteau; Mirtha Latsague; Patricio Acevedo; Miren Alberdi
The effects of a long-term simulated spring-summer UV-B daily course on some anatomical, physiological, and biochemical features were studied in new and old leaves of blueberry (Vaccinium corymbosum L.) cultivars Legacy, Brigitta, and Bluegold. The results show that under UV-B exposure, leaf thickness increased in Bluegold due to an increased intercellular cavities. By contrast, Brigitta maintained its leaf thickness. The net photosynthetic rate was not significantly affected by the UV-B radiation in any of the cultivars; however, Brigitta presented a better photosystem II performance, since this cultivar had more efficient photochemistry under the UV-B radiation. In addition, Brigitta also maintained enhanced total phenol and total anthocyanin content compared to the other cultivars. In conclusion, Brigitta was more resistant to the UV-B radiation than the other two cultivars.
Archive | 2017
Daniela Peña-Sanhueza; Claudio Inostroza-Blancheteau; AlejandraRibera-Fonseca; Marjorie Reyes-Díaz
Anthocyanin pigments are responsible for the red, purple, and blue colors of many fruits, vegetables, cereal grains, and flowers, increasing the interest due to their strong antioxi‐ dant capacity and their possible use to the benefit of human health. Abundant evidence is available about the preventive and therapeutic roles of anthocyanin in different kinds of chronic diseases. According to the structural differences and anthocyanin content of berries such as blackberry, blueberry, chokeberry, and others, there are different healthy properties in the treatments of circulatory disorders, cancer cell lines, and diabetes as well as antiviral and antimicrobial activities. On the other hand, molecular aspects play an important role in anthocyanin biosynthesis, making it possible to determine how biotic and abiotic factors impact its biosynthesis complex. Thus, the aim of this chapter was to describe the use of anthocyanins from berries for human health and their poten‐ tial use as a pharmacological bioresource in the prevention of chronic diseases. In addi‐ tion, an update of the molecular mechanisms involved in anthocyanin biosynthesis will be discussed.
Frontiers in Plant Science | 2017
Alejandra Serrano; Carmen Espinoza; Grace Armijo; Claudio Inostroza-Blancheteau; Evelyn Poblete; Carlos Meyer‐Regueiro; Aníbal Arce; Francisca Parada; Claudia Santibáñez; Patricio Arce-Johnson
Grapevine fruit development is a dynamic process that can be divided into three stages: formation (I), lag (II), and ripening (III), in which physiological and biochemical changes occur, leading to cell differentiation and accumulation of different solutes. These stages can be positively or negatively affected by multiple environmental factors. During the last decade, efforts have been made to understand berry development from a global perspective. Special attention has been paid to transcriptional and metabolic networks associated with the control of grape berry development, and how external factors affect the ripening process. In this review, we focus on the integration of global approaches, including proteomics, metabolomics, and especially transcriptomics, to understand grape berry development. Several aspects will be considered, including seed development and the production of seedless fruits; veraison, at which anthocyanin accumulation begins in the berry skin of colored varieties; and hormonal regulation of berry development and signaling throughout ripening, focusing on the transcriptional regulation of hormone receptors, protein kinases, and genes related to secondary messenger sensing. Finally, berry responses to different environmental factors, including abiotic (temperature, water-related stress and UV-B radiation) and biotic (fungi and viruses) stresses, and how they can significantly modify both, development and composition of vine fruit, will be discussed. Until now, advances have been made due to the application of Omics tools at different molecular levels. However, the potential of these technologies should not be limited to the study of single-level questions; instead, data obtained by these platforms should be integrated to unravel the molecular aspects of grapevine development. Therefore, the current challenge is the generation of new tools that integrate large-scale data to assess new questions in this field, and to support agronomical practices.