Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudio Poggi is active.

Publication


Featured researches published by Claudio Poggi.


Applied Optics | 2005

Underwater three-dimensional imaging with an amplitude-modulated laser radar at a 405 nm wavelength

L. Bartolini; Luigi De Dominicis; Mario Ferri De Collibus; G. Fornetti; M. Guarneri; E. Paglia; Claudio Poggi; Roberto Ricci

We report the results of underwater imaging with an amplitude-modulated single-mode laser beam and miniaturized piezoactuator-based scanning system. The basic elements of the device are a diode laser source at 405 nm with digital amplitude modulation and a microscanning system realized with a small-aperture aspheric lens mounted on a pair of piezoelectric translators driven by sawtooth waveforms. The system has been designed to be a low-weight and rugged imaging device suitable to operate at medium range (approximately 10 m) in clear seawater as also demonstrated by computer simulation of layout performance. In the controlled laboratory conditions a submillimeter range accuracy has been obtained at a laser amplitude modulation frequency of 36.7 MHz.


High-Resolution Wavefront Control: Methods, Devices, and Applications II | 2000

Laser in vessel-viewing system for nuclear fusion reactors

L. Bartolini; Andrea Bordone; Alberto Coletti; Mario Ferri De Collibus; G. Fornetti; S. Lupini; Carlo Neri; Claudio Poggi; M. Riva; Luigi Semeraro; Carlo Talarico

An amplitude modulated laser radar has been developed by ENEA (Italian Agency for New Technologies, Energy and Environment) for periodic in-vessel inspection in large fusion machines. Its overall optical design has been developed taking into account the extremely high radiation levels and operating temperatures foreseen in large European fusion machines such as JET (Joint European Torus) and ITER (International Thermo- nuclear Experimental Reactor). The viewing system is based on a transceiving optical radar using a RF modulated single mode 840 nm wavelength laser beam. The sounding beam is transmitted through a coherent optical fiber and a focusing optic to the inner part of the nuclear reactor vessel by a stainless steel probe on the tip of which a suitable scanning silica prism steers the laser beam along a linear raster spanning a -90 degree(s) to +60 degree(s) in elevation and 360 degree(s) in azimuth for a complete mapping of the vessel itself. All the electronics, including the laser source, avalanche photodiode and all the active components are located outside the bioshield, while passive components (receiving optics, transmitting collimator, fiber optics), located in the torus hall, are made of fused silica so that the overall laser radar is radiation resistant. The signal is acquired, the raster lines being synchronized with the aid of optical encoders linked to the scanning prism, thus yielding a TV like image. Preliminary results have been obtained scanning large sceneries including several real targets having different backscattering properties, colors and surface reflectivity ranging over several decades to simulate the expected dynamic range of the video signals incoming from the vessel.


Proceedings of SPIE | 2010

Detection of explosives at trace levels by laser-induced breakdown spectroscopy (LIBS)

V. Lazic; Antonio Palucci; S. Jovicevic; M. Carapanese; Claudio Poggi; E. Buono

In order to realize a compact instrument for detection of explosive at trace levels, LIBS was applied on residues from different explosives and potentially interfering materials. The residues were simply placed on aluminum support and the measurements were performed in air. Spectral line intensities from the characteristic atoms/molecules and their ratios, are strongly varying from one sampling point to another. The reasons for such variations were studied and explained, allowing establishing a suitable procedure for material recognition. Correct classification was always obtained for five types of explosives, while for TATP, nitroglycerine, DNT and EGDN this occurred only for very thin residues. In all the cases, the estimated detection threshold is between 0.1 ng and 1 ng.


Proceedings of SPIE, the International Society for Optical Engineering | 2005

Amplitude-modulated laser range-finder for 3D imaging with multi- sensor data integration capabilities

L. Bartolini; M. Ferri de Collibus; G. Fornetti; M. Guarneri; E. Paglia; Claudio Poggi; Roberto Ricci

A high performance Amplitude Modulated Laser Rangefinder (AM-LR) is presented, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The scanning system enables to sweep the sounding beam either linearly across the object or circularly around it, by placing the object on a controlled rotating platform. Both phase shift and amplitude of the modulating wave of back-scattered light are collected and processed, resulting respectively in an accurate range image and a shade-free, high resolution, photographic-like intensity image. The best performances obtained in terms of range resolution are ~100 μm. Resolution itself can be made to depend mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW. 3D models are reconstructed from sampled points by using specifically developed software tools, optimized so as to take advantage of the system peculiarities. Special procedures have also been implemented to perform precise matching of data acquired independently with different sensors (LIF laser sensors, thermographic cameras, etc.) onto the 3D models generated using the AM-LR. The system has been used to scan different types of real surfaces (stone, wood, alloys, bones) and ca be applied in various fields, ranging from industrial machining to medical diagnostics, vision in hostile environments cultural heritage conservation and restoration. The relevance of this technology in cultural heritage applications is discussed in special detail, by providing results obtained in different campaigns with an emphasis on the systems multi-sensor data integration capabilities.


Proceedings of SPIE, the International Society for Optical Engineering | 2007

Polarimetry as tool to improve phase measurement in an amplitude modulated laser for submarine archaeological sites inspection

L. Bartolini; L. De Dominicis; M. Ferri de Collibus; G. Fornetti; M. Francucci; M. Guarneri; E. Paglia; Claudio Poggi; Roberto Ricci

The propagation of polarized laser beams in turbid water is a subject of relevant interest in the field of underwater quantitative visualization with active sensors like amplitude modulated laser systems. In such devices, target range determination is based on the measurement of the phase difference ΔΦ between the fraction of the amplitude modulated laser beam reflected by the target and a reference signal. As water turbidity increases, the laser radiation backscattered from the water column shined by the sounding laser beam gives rise to an optical background with detrimental effects on the accuracy of range measurement. In this paper we analyze the possibility to increase the apparatus accuracy with a polarimetric technique based on the adoption of polarized laser radiation and polarization selective detection scheme for improving the underwater imaging of real scenes (e.g. archaeological sites). The method fully takes advantages of the different polarization properties of the laser radiation backscattered by turbid water and of the Lambertian component diffusively reflected by the target as described by the associated Mueller matrices. Measurements have been performed by adopting both a co-polarized and cross-polarized detection scheme with linearly and circularly polarized laser radiation. Various degrees of turbidity were realized by adding, as diffusive element, skim milk to water in order to obtain different scattering conditions. The effect of the transition from Rayleigh to Mie scattering regime on phase accuracy determination has been investigated together with the role played by high order scatterings as the medium approaches the optical thickness condition.


Optics Letters | 2007

Improvement in underwater phase measurement of an amplitude-modulated laser beam by polarimetric techniques

L. Bartolini; L. De Dominicis; G. Fornetti; M. Francucci; M. Guarneri; Claudio Poggi; Roberto Ricci

The phase of the amplitude-modulated radiation reflected by a Lambertian target immersed in water was measured by using a linearly and circularly polarized sounding laser beam. Different values of the water extinction coefficient in the range of 0.06 - 2 m(-1) were realized by adding skim milk as a scattering element. It is shown that very efficient rejection of optical noise, resulting in reliable phase measurements, is accomplished with a cross-polarized and copolarized detection scheme for linear and circular polarization, respectively. The experiment demonstrates that phase measurements are very sensitive to optical noise suppression and that, as far as single scattering is the main involved mechanism, significant improvements can be achieved by adopting a polarization control on both the transmitter and the receiver stages of the apparatus.


Optical Metrology for Arts and Multimedia | 2003

High-resolution laser radar for 3D imaging in artwork cataloging, reproduction, and restoration

Roberto Ricci; R. Fantoni; Mario Ferri De Collibus; G. Fornetti; M. Guarneri; Claudio Poggi

A high resolution Amplitude Modulated Laser Radar (AM-LR) sensor has recently been developed, aimed at accurately reconstructing 3D digital models of real targets, either single objects or complex scenes. The sensor sounding beam can be swept linearly across the object or circularly around it, by placing the object on a controlled rotating platform, enabling to obtain respectively linear and cylindrical range maps. Both amplitude and phase shift of the modulating wave of back-scattered light are collected and processed, providing respectively a shade-free, high resolution, photographic-like picture and accurate range data in the form of a range image. The resolution of range measurements depends mainly on the laser modulation frequency, provided that the power of the backscattered light reaching the detector is at least a few nW (current best performances are ~100 µm). The complete object surface can be reconstructed from the sampled points by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, alloys, bones), with relevant applications in different fields, ranging from industrial machining to medical diagnostics, to vision in hostile environments. Examples of artwork reconstructed models (pottery, marble statues) are presented and the relevance of this technology for reverse engineering applied to cultural heritage conservation and restoration are discussed. Final 3D models can be passed to numeric control machines for rapid-prototyping, exported in standard formats for CAD/CAM purposes and made available on the Internet by adopting a virtual museum paradigm, thus possibly enabling specialists to perform remote inspections on high resolution digital reproductions of hardly accessible masterpieces.


ALT '99 International Conference on Advanced Laser Technologies | 2000

Laser diagnostics developed for conservation and restoration of cultural inheritance

R. Fantoni; Antonio Palucci; Sergio Ribezzo; Ilaria Borgia; E. Bacchi; Michele Arturo Caponero; Andrea Bordone; L. Businaro; Mario Ferri De Collibus; G. Fornetti; Claudio Poggi

Different laser induced diagnostics, originally developed for different purposes including material characterization and environmental monitoring, have been applied in the field of Cultural Inheritance preservation with the aim to facilitate successive conservation and restoration actions. In this paper results relevant to three different techniques are reviewed. The use of topologic laser and 3D sensor in checking small artifacts and large surfaces is discussed, the application of Speckle interferometry to defect analysis of ceramic artwork is represented, a demonstration of the capabilities of a time resolved LIF system in the characterization of surface composition of ancient ceramics and frescoes is finally given.


ALT'02 International Conference on Advanced Laser Technologies | 2003

High-resolution laser radar: a powerful tool for 3D imaging with potential applications in artwork restoration and medical prosthesis

R. Fantoni; Andrea Bordone; Mario Ferri De Collibus; G. Fornetti; Marianna Guarneri; Claudio Poggi; Roberto Ricci

A high-resolution laser radar has been developed for laboratory applications at an accurate 3D reconstruction of real objects. The laser scanner can be used to produce single cylindrical range image when the object is placed on a controlled rotating platform or, alternatively, 3 or more linear range images, in order to fully characterize the surface of the object as seen from different points of view. From the sample points, characterized by an uncertainty as small as 100 μm, the complete object surface can be reconstructed by using specifically developed software tools. The system has been successfully applied to scan different types of real surfaces (stone, wood, bones) with relevant applications in industrial machining, artwork classification and medical diagnostics. Significant examples of 3D reconstructions are shown and discussed in view of a specific utilization for reverse engineering applied to artwork restoration and medical prosthesis.


Proceedings of SPIE, the International Society for Optical Engineering | 1999

Laser vision sensor for in-vessel inspection of fusion reactors

L. Bartolini; Andrea Bordone; Alberto Coletti; Mario Ferri De Collibus; G. Fornetti; Carlo Neri; Claudio Poggi; M. Riva; Luigi Semeraro; Carlo Talarico

An optical amplitude modulated laser radar has been developed for periodic in-vessel inspection in large fusion machines and its overall optical aiming is developed taking into account the extremely high radiation levels and operating temperatures foreseen in the large European fusion machines (JET and ITER). In this paper an in vessel viewing system based on a transceiving optical radar using an RF modulated single mode 840 nm wavelength laser beam is illustrated. The sounding beam is transmitted through a coherent optical fiber and a focusing collimator to the inner part of the vessel by a stainless steel probe on the tip of which a suitable scanning silica prism steers the laser beam along a linear raster spanning a -90 degree to +90 degree in elevation and 360 degrees in azimuth for a complete mapping of the vessel itself. All the electronics, including laser source, avalanche photodiode and all the active components are located outside the bioshield, while passive components (receiving optics, transmitting collimator, fiber optics), located in the torus hall, are in fused silica so that the overall vision system is radiation resistant. The Active and passive components are contained in separated stainless steel boxes connected through two silica fiber optics. The laser radiation backscattered by the resolved surface element of the vessel is received by a collecting silica optics and remotely transmitted through a multimode fiber on the surface of an avalanche photodiode detector located in the active module at 120 m distance. The received signal is then acquired, the raster lines being synchronized with the aid of optical encoders linked to the scanning prism, to give a TV like image. The scanning accuracy expected in scanning process is less than 1 mm at 10 m of distance: this is a suitable resolution to yield a high quality image showing all the damages due to plasma disruptions. Preliminary results have been obtained scanning large sceneries including several real targets having different light backscattering properties, colors and surfaces reflectivity ranging over several decades to simulate the expected dynamic range of the video signals incoming from the vessel.

Researchain Logo
Decentralizing Knowledge