Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claudy Jolivet is active.

Publication


Featured researches published by Claudy Jolivet.


The ISME Journal | 2011

Determinants of the distribution of nitrogen-cycling microbial communities at the landscape scale

David Bru; Alban Ramette; Nicolas Saby; Samuel Dequiedt; Lionel Ranjard; Claudy Jolivet; Dominique Arrouays; Laurent Philippot

Little information is available regarding the landscape-scale distribution of microbial communities and its environmental determinants. However, a landscape perspective is needed to understand the relative importance of local and regional factors and land management for the microbial communities and the ecosystem services they provide. In the most comprehensive analysis of spatial patterns of microbial communities to date, we investigated the distribution of functional microbial communities involved in N-cycling and of the total bacterial and crenarchaeal communities over 107 sites in Burgundy, a 31 500 km2 region of France, using a 16 × 16 km2 sampling grid. At each sampling site, the abundance of total bacteria, crenarchaea, nitrate reducers, denitrifiers- and ammonia oxidizers were estimated by quantitative PCR and 42 soil physico-chemical properties were measured. The relative contributions of land use, spatial distance, climatic conditions, time, and soil physico-chemical properties to the spatial distribution of the different communities were analyzed by canonical variation partitioning. Our results indicate that 43–85% of the spatial variation in community abundances could be explained by the measured environmental parameters, with soil chemical properties (mostly pH) being the main driver. We found spatial autocorrelation up to 739 km and used geostatistical modelling to generate predictive maps of the distribution of microbial communities at the landscape scale. The present study highlights the potential of a spatially explicit approach for microbial ecology to identify the overarching factors driving the spatial heterogeneity of microbial communities even at the landscape scale.


PLOS ONE | 2011

Validation and Application of a PCR Primer Set to Quantify Fungal Communities in the Soil Environment by Real-Time Quantitative PCR

Nicolas Chemidlin Prévost-Bouré; Richard Christen; Samuel Dequiedt; Christophe Mougel; Mélanie Lelièvre; Claudy Jolivet; Hamid Reza Shahbazkia; Laure Guillou; Dominique Arrouays; Lionel Ranjard

Fungi constitute an important group in soil biological diversity and functioning. However, characterization and knowledge of fungal communities is hampered because few primer sets are available to quantify fungal abundance by real-time quantitative PCR (real-time Q-PCR). The aim in this study was to quantify fungal abundance in soils by incorporating, into a real-time Q-PCR using the SYBRGreen® method, a primer set already used to study the genetic structure of soil fungal communities. To satisfy the real-time Q-PCR requirements to enhance the accuracy and reproducibility of the detection technique, this study focused on the 18S rRNA gene conserved regions. These regions are little affected by length polymorphism and may provide sufficiently small targets, a crucial criterion for enhancing accuracy and reproducibility of the detection technique. An in silico analysis of 33 primer sets targeting the 18S rRNA gene was performed to select the primer set with the best potential for real-time Q-PCR: short amplicon length; good fungal specificity and coverage. The best consensus between specificity, coverage and amplicon length among the 33 sets tested was the primer set FR1 / FF390. This in silico analysis of the specificity of FR1 / FF390 also provided additional information to the previously published analysis on this primer set. The specificity of the primer set FR1 / FF390 for Fungi was validated in vitro by cloning - sequencing the amplicons obtained from a real time Q-PCR assay performed on five independent soil samples. This assay was also used to evaluate the sensitivity and reproducibility of the method. Finally, fungal abundance in samples from 24 soils with contrasting physico-chemical and environmental characteristics was examined and ranked to determine the importance of soil texture, organic carbon content, C∶N ratio and land use in determining fungal abundance in soils.


Nature Communications | 2013

Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity

Lionel Ranjard; Samuel Dequiedt; N. Chemidlin Prévost-Bouré; Jean Thioulouse; Nicolas Saby; Mélanie Lelièvre; Pierre-Alain Maron; F.E.R Morin; Antonio Bispo; Claudy Jolivet; Dominique Arrouays; Philippe Lemanceau

Spatial scaling and determinism of the wide-scale distribution of macroorganism diversity has been largely demonstrated over a century. For microorganisms, and especially for soil bacteria, this fundamental question requires more thorough investigation, as little information has been reported to date. Here by applying the taxa-area relationship to the largest spatially explicit soil sampling available in France (2,085 soils, area covered ~5.3 × 10(5) km(2)) and developing an innovative evaluation of the habitat-area relationship, we show that the turnover rate of bacterial diversity in soils on a wide scale is highly significant and strongly correlated with the turnover rate of soil habitat. As the diversity of micro- and macroorganisms appears to be driven by similar processes (dispersal and selection), maintaining diverse and spatially structured habitats is essential for soil biological patrimony and the resulting ecosystem services.


Microbial Biotechnology | 2012

Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure

Sébastien Terrat; Richard Christen; Samuel Dequiedt; Mélanie Lelièvre; Virginie Nowak; Tiffanie Regnier; Dipankar Bachar; Pierre Plassart; Patrick Wincker; Claudy Jolivet; Antonio Bispo; Philippe Lemanceau; Pierre-Alain Maron; Christophe Mougel; Lionel Ranjard

Three soil DNA extraction procedures (homemade protocols and commercial kit) varying in their practicability were applied to contrasting soils to evaluate their efficiency in recovering: (i) soil DNA and (ii) bacterial diversity estimated by 16S rDNA pyrosequencing. Significant differences in DNA yield were systematically observed between tested procedures. For certain soils, 10 times more DNA was recovered with one protocol than with the others. About 15 000 sequences of 16S rDNA were obtained for each sample which were clustered to draw rarefaction curves. These curves, as well as the PCA ordination of community composition based on OTU clustering, did not reveal any significant difference between procedures. Nevertheless, significant differences between procedures were highlighted by the taxonomic identification of sequences obtained at the phylum to genus levels. Depending on the soil, differences in the number of genera detected ranged from 1% to 26% between the most and least efficient procedures, mainly due to a poorer capacity to recover populations belonging to Actinobacteria, Firmicutes or Crenarchaeota. This study enabled us to rank the relative efficiencies of protocols for their recovery of soil molecular microbial biomass and bacterial diversity and to help choosing an appropriate soil DNA extraction procedure adapted to novel sequencing technologies.


Frontiers in Microbiology | 2012

Occurrence of CTX-M Producing Escherichia coli in Soils, Cattle, and Farm Environment in France (Burgundy Region)

Alain Hartmann; Aude Locatelli; Lucie Amoureux; Géraldine Depret; Claudy Jolivet; Eric Gueneau; Catherine Neuwirth

CTX-M [a major type of extended-spectrum beta-lactamase (ESBL)] producing Escherichia coli are increasingly involved in human infections worldwide. The aim of this study was to investigate potential reservoirs for such strains: soils, cattle, and farm environment. The prevalence of blaCTX-M genes was determined directly from soil DNA extracts obtained from 120 sites in Burgundy (France) using real-time PCR. blaCTX-M targets were found in 20% of the DNA extracts tested. Samples of cattle feces (n = 271) were collected from 182 farms in Burgundy. Thirteen ESBL-producing isolates were obtained from 12 farms and further characterized for the presence of bla genes. Of the 13 strains, five and eight strains carried blaTEM-71 genes and blaCTX-M-1 genes respectively. Ten strains of CTX-M-1 producing E. coli were isolated from cultivated and pasture soils as well as from composted manure within two of these farms. The genotypic analysis revealed that environmental and animal strains were clonally related. Our study confirms the occurrence of CTX-M producing E. coli in cattle and reports for the first time the occurrence of such strains in cultivated soils. The environmental competence of such strains has to be determined and might explain their long term survival since CTX-M isolates were recovered from a soil that was last amended with manure 1 year before sampling.


Agronomy for Sustainable Development | 2010

Biogeography of soil microbial communities: a review and a description of the ongoing french national initiative

Lionel Ranjard; Samuel Dequiedt; Claudy Jolivet; Nicolas Saby; Jean Thioulouse; Jérôme Harmand; Patrice Loisel; Alain Rapaport; Saliou Fall; Pascal Simonet; Richard Joffre; Nicolas Chemidlin-Prévost Bouré; Pierre-Alain Maron; Christophe Mougel; Manuel Martin; Benoit Toutain; Dominique Arrouays; Philippe Lemanceau

Microbial biogeography is the study of the distribution of microbial diversity on large scales of space and time. This science aims at understanding biodiversity regulation and its link with ecosystem biological functioning, goods and services such as maintenance of productivity, of soil and atmospheric quality, and of soil health. Although the initial concept dates from the early 20th century (Beijerinck (1913) De infusies en de ontdekking der backterien, in: Jaarboek van de Knoniklijke Akademie van Wetenschappen, Muller, Amsterdam), only recently have an increasing number of studies have investigated the biogeographical patterns of soil microbial diversity. A such delay is due to the constraints of the microbial models, the need to develop relevant molecular and bioinformatic tools to assess microbial diversity, and the non-availability of an adequate sampling strategy. Consequently, the conclusions from microbial ecology studies have rarely been generally applicable and even the fundamental power-laws differ because the taxa-area relationship and the influence of global and distal parameters on the spatial distribution of microbial communities have not been examined. In this article we define and discuss the scientific, technical and operational limits and outcomes resulting from soil microbial biogeography together with the technical and logistical feasibility. The main results are that microbial communities are not stochastically distributed on a wide scale and that biogeographical patterns are more influenced by local parameters such as soil type and land use than by distal ones, e.g. climate and geomorphology, contrary to plants and animals. We then present the European soil biological survey network, focusing on the French national initiative and the „ECOMIC-RMQS” project. The objective of the ECOMIC-RMQS project is to characterise the density and diversity of bacterial communities in all soils in the RMQS library in order to assess, for the first time, not only microbial biogeography across the whole of France but also the impact of land use on soil biodiversity (Réseau de Mesures de la Qualité des Sols = French Soil Quality Monitoring Network, 2200 soils covering all the French territory with a systematic grid of sampling). The scientific, technical and logistical outputs are examined with a view to the future prospects needed to develop this scientific domain and its applications in sustainable land use.


Communications in Soil Science and Plant Analysis | 1998

Comparison between analytical methods for organic carbon and organic matter determination in sandy Spodosols of France

Claudy Jolivet; Dominique Arrouays; M. Bernoux

Abstract On samples from sandy soils of French Gascony (spodosols), we compared results from analytical determination of organic carbon (C) by wet and dry combustion and of organic matter (OM) by loss‐on‐ignition at 550°C. Results demonstrated that wet digestion systematically underestimated C content. Loss‐on‐ignition an wet digestion measurements were well correlated to C content obtained by dry combustion.


Science of The Total Environment | 2009

Multivariate analysis of the spatial patterns of 8 trace elements using the French soil monitoring network data

Nicolas Saby; Jean Thioulouse; Claudy Jolivet; Céline Ratié; L. Boulonne; Antonio Bispo; Dominique Arrouays

Geostatistical and spatially constrained multivariate analysis methods (MULTISPATI-PCA) have been applied at the scale of France to differentiate the influence of natural background from the pollution due to human activities on the content of 8 trace elements in the topsoil. The results of MULTISPATI-PCA evidence strong spatial structures attributed to different natural and artificial processes. The first axis can be interpreted as an axis of global richness in trace elements. Axis 2 reflects geochemical anomalies in Tl and Pb. Axis 3 exhibits on one hand natural pedogeogenic anomalies and on the other hand, it shows high values attributable to anthropogenic contamination. Finally, axis 4 is driven by anthropogenic copper contamination. At the French territory scale, we show that the main factors controlling trace elements distribution in the topsoil are soil texture, variations in parent material geology and weathering, and various anthropogenic sources.


Geoderma | 2014

Evaluation of modelling approaches for predicting the spatial distribution of soil organic carbon stocks at the national scale

Manuel Martin; T.G. Orton; Eva Lacarce; Jeroen Meersmans; Nicolas Saby; Jean-Baptiste Paroissien; Claudy Jolivet; L. Boulonne; Dominique Arrouays

Abstract Soil organic carbon (SOC) plays a major role in the global carbon budget. It can act as a source or a sink of atmospheric carbon, thereby possibly influencing the course of climate change. Improving the tools that model the spatial distributions of SOC stocks at national scales is a priority, both for monitoring changes in SOC and as an input for global carbon cycles studies. In this paper, we compare and evaluate two recent and promising modelling approaches. First, we considered several increasingly complex boosted regression trees (BRT), a convenient and efficient multiple regression model from the statistical learning field. Further, we considered a robust geostatistical approach coupled to the BRT models. Testing the different approaches was performed on the dataset from the French Soil Monitoring Network, with a consistent cross-validation procedure. We showed that when a limited number of predictors were included in the BRT model, the standalone BRT predictions were significantly improved by robust geostatistical modelling of the residuals. However, when data for several SOC drivers were included, the standalone BRT model predictions were not significantly improved by geostatistical modelling. Therefore, in this latter situation, the BRT predictions might be considered adequate without the need for geostatistical modelling, provided that i) care is exercised in model fitting and validating, and ii) the dataset does not allow for modelling of local spatial autocorrelations, as is the case for many national systematic sampling schemes.


PLOS ONE | 2013

Biotic and Abiotic Soil Properties Influence Survival of Listeria monocytogenes in Soil

Aude Locatelli; Aymé Spor; Claudy Jolivet; Pascal Piveteau; Alain Hartmann

Listeria monocytogenes is a food-borne pathogen responsible for the potentially fatal disease listeriosis and terrestrial ecosystems have been hypothesized to be its natural reservoir. Therefore, identifying the key edaphic factors that influence its survival in soil is critical. We measured the survival of L. monocytogenes in a set of 100 soil samples belonging to the French Soil Quality Monitoring Network. This soil collection is meant to be representative of the pedology and land use of the whole French territory. The population of L. monocytogenes in inoculated microcosms was enumerated by plate count after 7, 14 and 84 days of incubation. Analysis of survival profiles showed that L. monocytogenes was able to survive up to 84 days in 71% of the soils tested, in the other soils (29%) only a short-term survival (up to 7 to 14 days) was observed. Using variance partitioning techniques, we showed that about 65% of the short-term survival ratio of L. monocytogenes in soils was explained by the soil chemical properties, amongst which the basic cation saturation ratio seems to be the main driver. On the other hand, while explaining a lower amount of survival ratio variance (11%), soil texture and especially clay content was the main driver of long-term survival of L. monocytogenes in soils. In order to assess the effect of the endogenous soils microbiota on L. monocytogenes survival, sterilized versus non-sterilized soils microcosms were compared in a subset of 9 soils. We found that the endogenous soil microbiota could limit L. monocytogenes survival especially when soil pH was greater than 7, whereas in acidic soils, survival ratios in sterilized and unsterilized microcosms were not statistically different. These results point out the critical role played by both the endogenous microbiota and the soil physic-chemical properties in determining the survival of L. monocytogenes in soils.

Collaboration


Dive into the Claudy Jolivet's collaboration.

Top Co-Authors

Avatar

Dominique Arrouays

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Nicolas Saby

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Lionel Ranjard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Samuel Dequiedt

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Antonio Bispo

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

L. Boulonne

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Manuel Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pierre-Alain Maron

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge