Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Pierre-Alain Maron is active.

Publication


Featured researches published by Pierre-Alain Maron.


The ISME Journal | 2013

Loss in microbial diversity affects nitrogen cycling in soil

Laurent Philippot; Aymé Spor; Catherine Hénault; David Bru; Florian Bizouard; Christopher M. Jones; Amadou Sarr; Pierre-Alain Maron

Microbial communities have a central role in ecosystem processes by driving the Earth’s biogeochemical cycles. However, the importance of microbial diversity for ecosystem functioning is still debated. Here, we experimentally manipulated the soil microbial community using a dilution approach to analyze the functional consequences of diversity loss. A trait-centered approach was embraced using the denitrifiers as model guild due to their role in nitrogen cycling, a major ecosystem service. How various diversity metrics related to richness, eveness and phylogenetic diversity of the soil denitrifier community were affected by the removal experiment was assessed by 454 sequencing. As expected, the diversity metrics indicated a decrease in diversity in the 1/103 and 1/105 dilution treatments compared with the undiluted one. However, the extent of dilution and the corresponding reduction in diversity were not commensurate, as a dilution of five orders of magnitude resulted in a 75% decrease in estimated richness. This reduction in denitrifier diversity resulted in a significantly lower potential denitrification activity in soil of up to 4–5 folds. Addition of wheat residues significantly increased differences in potential denitrification between diversity levels, indicating that the resource level can influence the shape of the microbial diversity–functioning relationship. This study shows that microbial diversity loss can alter terrestrial ecosystem processes, which suggests that the importance of functional redundancy in soil microbial communities has been overstated.


Microbial Ecology | 2007

Metaproteomics: A New Approach for Studying Functional Microbial Ecology

Pierre-Alain Maron; Lionel Ranjard; Christophe Mougel; Philippe Lemanceau

In the postgenomic era, there is a clear recognition of the limitations of nucleic acid-based methods for getting information on functions expressed by microbial communities in situ. In this context, the large-scale study of proteins expressed by indigenous microbial communities (metaproteome) should provide information to gain insights into the functioning of the microbial component in ecosystems. Characterization of the metaproteome is expected to provide data linking genetic and functional diversity of microbial communities. Studies on the metaproteome together with those on the metagenome and the metatranscriptome will contribute to progress in our knowledge of microbial communities and their contribution in ecosystem functioning. Effectiveness of the metaproteomic approach will be improved as increasing metagenomic information is made available thanks to the environmental sequencing projects currently running. More specifically, analysis of metaproteome in contrasted environmental situations should allow (1) tracking new functional genes and metabolic pathways and (2) identifying proteins preferentially associated with specific stresses. These proteins considered as functional bioindicators should contribute, in the future, to help policy makers in defining strategies for sustainable management of our environment.


Nature Communications | 2013

Turnover of soil bacterial diversity driven by wide-scale environmental heterogeneity

Lionel Ranjard; Samuel Dequiedt; N. Chemidlin Prévost-Bouré; Jean Thioulouse; Nicolas Saby; Mélanie Lelièvre; Pierre-Alain Maron; F.E.R Morin; Antonio Bispo; Claudy Jolivet; Dominique Arrouays; Philippe Lemanceau

Spatial scaling and determinism of the wide-scale distribution of macroorganism diversity has been largely demonstrated over a century. For microorganisms, and especially for soil bacteria, this fundamental question requires more thorough investigation, as little information has been reported to date. Here by applying the taxa-area relationship to the largest spatially explicit soil sampling available in France (2,085 soils, area covered ~5.3 × 10(5) km(2)) and developing an innovative evaluation of the habitat-area relationship, we show that the turnover rate of bacterial diversity in soils on a wide scale is highly significant and strongly correlated with the turnover rate of soil habitat. As the diversity of micro- and macroorganisms appears to be driven by similar processes (dispersal and selection), maintaining diverse and spatially structured habitats is essential for soil biological patrimony and the resulting ecosystem services.


Microbial Biotechnology | 2012

Molecular biomass and MetaTaxogenomic assessment of soil microbial communities as influenced by soil DNA extraction procedure

Sébastien Terrat; Richard Christen; Samuel Dequiedt; Mélanie Lelièvre; Virginie Nowak; Tiffanie Regnier; Dipankar Bachar; Pierre Plassart; Patrick Wincker; Claudy Jolivet; Antonio Bispo; Philippe Lemanceau; Pierre-Alain Maron; Christophe Mougel; Lionel Ranjard

Three soil DNA extraction procedures (homemade protocols and commercial kit) varying in their practicability were applied to contrasting soils to evaluate their efficiency in recovering: (i) soil DNA and (ii) bacterial diversity estimated by 16S rDNA pyrosequencing. Significant differences in DNA yield were systematically observed between tested procedures. For certain soils, 10 times more DNA was recovered with one protocol than with the others. About 15 000 sequences of 16S rDNA were obtained for each sample which were clustered to draw rarefaction curves. These curves, as well as the PCA ordination of community composition based on OTU clustering, did not reveal any significant difference between procedures. Nevertheless, significant differences between procedures were highlighted by the taxonomic identification of sequences obtained at the phylum to genus levels. Depending on the soil, differences in the number of genera detected ranged from 1% to 26% between the most and least efficient procedures, mainly due to a poorer capacity to recover populations belonging to Actinobacteria, Firmicutes or Crenarchaeota. This study enabled us to rank the relative efficiencies of protocols for their recovery of soil molecular microbial biomass and bacterial diversity and to help choosing an appropriate soil DNA extraction procedure adapted to novel sequencing technologies.


Comptes Rendus Biologies | 2011

Soil microbial diversity: Methodological strategy, spatial overview and functional interest

Pierre-Alain Maron; Christophe Mougel; Lionel Ranjard

Since the development of industrialization, urbanization and agriculture, soils have been subjected to numerous variations in environmental conditions, which have resulted in modifications of the taxonomic diversity and functioning of the indigenous microbial communities. As a consequence, the functional significance of these losses/modifications of biodiversity, in terms of the capacity of ecosystems to maintain the functions and services on which humanity depends, is now of pivotal importance. In this context, one of the main challenges in soil microbial ecology is to better understand and predict the processes that drive soil microbial diversity and the link between diversity and ecosystem process. This review describes past, present and ongoing conceptual and methodological strategies employed to better assess and understand the distribution and evolution of soil microbial diversity with the aim of increasing our capacity to translate such diversity into soil biological functioning and, more widely, into ecosystem services.


PLOS ONE | 2012

Evaluation of the ISO Standard 11063 DNA Extraction Procedure for Assessing Soil Microbial Abundance and Community Structure

Pierre Plassart; Sébastien Terrat; Bruce C. Thomson; Robert I. Griffiths; Samuel Dequiedt; Mélanie Lelièvre; Tiffanie Regnier; Virginie Nowak; Mark J. Bailey; Philippe Lemanceau; Antonio Bispo; Abad Chabbi; Pierre-Alain Maron; Christophe Mougel; Lionel Ranjard

Soil DNA extraction has become a critical step in describing microbial biodiversity. Historically, ascertaining overarching microbial ecological theories has been hindered as independent studies have used numerous custom and commercial DNA extraction procedures. For that reason, a standardized soil DNA extraction method (ISO-11063) was previously published. However, although this ISO method is suited for molecular tools such as quantitative PCR and community fingerprinting techniques, it has only been optimized for examining soil bacteria. Therefore, the aim of this study was to assess an appropriate soil DNA extraction procedure for examining bacterial, archaeal and fungal diversity in soils of contrasting land-use and physico-chemical properties. Three different procedures were tested: the ISO-11063 standard; a custom procedure (GnS-GII); and a modified ISO procedure (ISOm) which includes a different mechanical lysis step (a FastPrep ®-24 lysis step instead of the recommended bead-beating). The efficacy of each method was first assessed by estimating microbial biomass through total DNA quantification. Then, the abundances and community structure of bacteria, archaea and fungi were determined using real-time PCR and terminal restriction fragment length polymorphism approaches. Results showed that DNA yield was improved with the GnS-GII and ISOm procedures, and fungal community patterns were found to be strongly dependent on the extraction method. The main methodological factor responsible for differences between extraction procedure efficiencies was found to be the soil homogenization step. For integrative studies which aim to examine bacteria, archaea and fungi simultaneously, the ISOm procedure results in higher DNA recovery and better represents microbial communities.


Agronomy for Sustainable Development | 2010

Biogeography of soil microbial communities: a review and a description of the ongoing french national initiative

Lionel Ranjard; Samuel Dequiedt; Claudy Jolivet; Nicolas Saby; Jean Thioulouse; Jérôme Harmand; Patrice Loisel; Alain Rapaport; Saliou Fall; Pascal Simonet; Richard Joffre; Nicolas Chemidlin-Prévost Bouré; Pierre-Alain Maron; Christophe Mougel; Manuel Martin; Benoit Toutain; Dominique Arrouays; Philippe Lemanceau

Microbial biogeography is the study of the distribution of microbial diversity on large scales of space and time. This science aims at understanding biodiversity regulation and its link with ecosystem biological functioning, goods and services such as maintenance of productivity, of soil and atmospheric quality, and of soil health. Although the initial concept dates from the early 20th century (Beijerinck (1913) De infusies en de ontdekking der backterien, in: Jaarboek van de Knoniklijke Akademie van Wetenschappen, Muller, Amsterdam), only recently have an increasing number of studies have investigated the biogeographical patterns of soil microbial diversity. A such delay is due to the constraints of the microbial models, the need to develop relevant molecular and bioinformatic tools to assess microbial diversity, and the non-availability of an adequate sampling strategy. Consequently, the conclusions from microbial ecology studies have rarely been generally applicable and even the fundamental power-laws differ because the taxa-area relationship and the influence of global and distal parameters on the spatial distribution of microbial communities have not been examined. In this article we define and discuss the scientific, technical and operational limits and outcomes resulting from soil microbial biogeography together with the technical and logistical feasibility. The main results are that microbial communities are not stochastically distributed on a wide scale and that biogeographical patterns are more influenced by local parameters such as soil type and land use than by distal ones, e.g. climate and geomorphology, contrary to plants and animals. We then present the European soil biological survey network, focusing on the French national initiative and the „ECOMIC-RMQS” project. The objective of the ECOMIC-RMQS project is to characterise the density and diversity of bacterial communities in all soils in the RMQS library in order to assess, for the first time, not only microbial biogeography across the whole of France but also the impact of land use on soil biodiversity (Réseau de Mesures de la Qualité des Sols = French Soil Quality Monitoring Network, 2200 soils covering all the French territory with a systematic grid of sampling). The scientific, technical and logistical outputs are examined with a view to the future prospects needed to develop this scientific domain and its applications in sustainable land use.


Biogeochemistry | 2013

Soil microbial diversity affects soil organic matter decomposition in a silty grassland soil

Karen Baumann; Marie-France Dignac; Cornelia Rumpel; Gérard Bardoux; Amadou Sarr; Markus Steffens; Pierre-Alain Maron

Soil microorganisms play a pivotal role in soil organic matter (SOM) turn-over and their diversity is discussed as a key to the function of soil ecosystems. However, the extent to which SOM dynamics may be linked to changes in soil microbial diversity remains largely unknown. We characterized SOM degradation along a microbial diversity gradient in a two month incubation experiment under controlled laboratory conditions. A microbial diversity gradient was created by diluting soil suspension of a silty grassland soil. Microcosms containing the same sterilized soil were re-inoculated with one of the created microbial diversities, and were amended with 13C labeled wheat in order to assess whether SOM decomposition is linked to soil microbial diversity or not. Structural composition of wheat was assessed by solid-state 13C nuclear magnetic resonance, sugar and lignin content was quantified and labeled wheat contribution was determined by 13C compound specific analyses. Results showed decreased wheat O-alkyl-C with increasing microbial diversity. Total non-cellulosic sugar-C derived from wheat was not significantly influenced by microbial diversity. Carbon from wheat sugars (arabinose-C and xylose-C), however, was highest when microbial diversity was low, indicating reduced wheat sugar decomposition at low microbial diversity. Xylose-C was significantly correlated with the Shannon diversity index of the bacterial community. Soil lignin-C decreased irrespective of microbial diversity. At low microbial diversity the oxidation state of vanillyl–lignin units was significantly reduced. We conclude that microbial diversity alters bulk chemical structure, the decomposition of plant litter sugars and influences the microbial oxidation of total vanillyl–lignins, thus changing SOM composition.


PLOS ONE | 2013

Microbial diversity and structure are drivers of the biological barrier effect against Listeria monocytogenes in soil.

Anne-Laure Vivant; Dominique Garmyn; Pierre-Alain Maron; Virginie Nowak; Pascal Piveteau

Understanding the ecology of pathogenic organisms is important in order to monitor their transmission in the environment and the related health hazards. We investigated the relationship between soil microbial diversity and the barrier effect against Listeria monocytogenes invasion. By using a dilution-to-extinction approach, we analysed the consequence of eroding microbial diversity on L. monocytogenes population dynamics under standardised conditions of abiotic parameters and microbial abundance in soil microcosms. We demonstrated that highly diverse soil microbial communities act as a biological barrier against L. monocytogenes invasion and that phylogenetic composition of the community also has to be considered. This suggests that erosion of diversity may have damaging effects regarding circulation of pathogenic microorganisms in the environment.


Environmental Microbiology | 2008

Response of soil bacterial community structure to successive perturbations of different types and intensities

Mélanie Bressan; Christophe Mougel; Samuel Dequiedt; Pierre-Alain Maron; Philippe Lemanceau; Lionel Ranjard

In soil, genetic structure modifications of indigenous bacterial community consecutively to a severe stress (mercury contamination) were delayed when the community was pre-exposed to various minor perturbations (heat, copper and atrazine). Such minor perturbations induced transitory community structure modifications leading to an increase of community stability towards a severe mercury stress. These results illustrated well the short-term pre-adaptation process for bacterial community hypothesizing that community submitted to perturbations become more resistant to withstand another stress.

Collaboration


Dive into the Pierre-Alain Maron's collaboration.

Top Co-Authors

Avatar

Lionel Ranjard

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Samuel Dequiedt

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Lemanceau

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Sébastien Terrat

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Virginie Nowak

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Christophe Mougel

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudy Jolivet

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nicolas Chemidlin Prévost-Bouré

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge