Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Claus E. Andersen is active.

Publication


Featured researches published by Claus E. Andersen.


Physics in Medicine and Biology | 2004

Real-time optical-fibre luminescence dosimetry for radiotherapy: physical characteristics and applications in photon beams

Marianne C. Aznar; Claus E. Andersen; L. Bøtter-Jensen; Sven Bäck; Sören Mattsson; Flemming Kjær-Kristoffersen; Joakim Medin

A new optical-fibre radiation dosimeter system, based on radioluminescence and optically stimulated luminescence from carbon-doped aluminium oxide, was developed and tested in clinical photon beams. This prototype offers several features, such as a small detector (1 x 1 x 2 mm3), high sensitivity, real-time read-out and the ability to measure both dose rate and absorbed dose. The measurements describing reproducibility and output dependence on dose rate, field size and energy all had standard deviations smaller than 1%. The signal variation with the angle of incidence was smaller than 2% (1 SD). Measurements performed in clinical situations suggest the potential of using this real-time system for in vivo dosimetry in radiotherapy.


Medical Physics | 2013

In vivo dosimetry in brachytherapy

Kari Tanderup; S Beddar; Claus E. Andersen; Gustavo Kertzscher; Joanna E. Cygler

In vivo dosimetry (IVD) has been used in brachytherapy (BT) for decades with a number of different detectors and measurement technologies. However, IVD in BT has been subject to certain difficulties and complexities, in particular due to challenges of the high-gradient BT dose distribution and the large range of dose and dose rate. Due to these challenges, the sensitivity and specificity toward error detection has been limited, and IVD has mainly been restricted to detection of gross errors. Given these factors, routine use of IVD is currently limited in many departments. Although the impact of potential errors may be detrimental since treatments are typically administered in large fractions and with high-gradient-dose-distributions, BT is usually delivered without independent verification of the treatment delivery. This Vision 20/20 paper encourages improvements within BT safety by developments of IVD into an effective method of independent treatment verification.


Medical Physics | 2014

Detector to detector corrections: a comprehensive experimental study of detector specific correction factors for beam output measurements for small radiotherapy beams

Godfrey Azangwe; P. Grochowska; Dietmar Georg; Joanna Izewska; Johannes Hopfgartner; Wolfgang Lechner; Claus E. Andersen; Anders Ravnsborg Beierholm; Jakob Helt-Hansen; Hideyuki Mizuno; Akifumi Fukumura; Kaori Yajima; C. Gouldstone; Peter Sharpe; Ahmed Meghzifene; Hugo Palmans

PURPOSE The aim of the present study is to provide a comprehensive set of detector specific correction factors for beam output measurements for small beams, for a wide range of real time and passive detectors. The detector specific correction factors determined in this study may be potentially useful as a reference data set for small beam dosimetry measurements. METHODS Dose response of passive and real time detectors was investigated for small field sizes shaped with a micromultileaf collimator ranging from 0.6 × 0.6 cm(2) to 4.2 × 4.2 cm(2) and the measurements were extended to larger fields of up to 10 × 10 cm(2). Measurements were performed at 5 cm depth, in a 6 MV photon beam. Detectors used included alanine, thermoluminescent dosimeters (TLDs), stereotactic diode, electron diode, photon diode, radiophotoluminescent dosimeters (RPLDs), radioluminescence detector based on carbon-doped aluminium oxide (Al2O3:C), organic plastic scintillators, diamond detectors, liquid filled ion chamber, and a range of small volume air filled ionization chambers (volumes ranging from 0.002 cm(3) to 0.3 cm(3)). All detector measurements were corrected for volume averaging effect and compared with dose ratios determined from alanine to derive a detector correction factors that account for beam perturbation related to nonwater equivalence of the detector materials. RESULTS For the detectors used in this study, volume averaging corrections ranged from unity for the smallest detectors such as the diodes, 1.148 for the 0.14 cm(3) air filled ionization chamber and were as high as 1.924 for the 0.3 cm(3) ionization chamber. After applying volume averaging corrections, the detector readings were consistent among themselves and with alanine measurements for several small detectors but they differed for larger detectors, in particular for some small ionization chambers with volumes larger than 0.1 cm(3). CONCLUSIONS The results demonstrate how important it is for the appropriate corrections to be applied to give consistent and accurate measurements for a range of detectors in small beam geometry. The results further demonstrate that depending on the choice of detectors, there is a potential for large errors when effects such as volume averaging, perturbation and differences in material properties of detectors are not taken into account. As the commissioning of small fields for clinical treatment has to rely on accurate dose measurements, the authors recommend the use of detectors that require relatively little correction, such as unshielded diodes, diamond detectors or microchambers, and solid state detectors such as alanine, TLD, Al2O3:C, or scintillators.


Medical Physics | 2009

Characterization of a fiber-coupled Al2O3:C luminescence dosimetry system for online in vivo dose verification during 192Ir brachytherapy

Claus E. Andersen; S.K. Nielsen; Steffen Greilich; Jakob Helt-Hansen; Jacob Christian Lindegaard; Kari Tanderup

A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.


Medical Physics | 2009

Characterization of a fiber-coupled Al{sub 2}O{sub 3}:C luminescence dosimetry system for online in vivo dose verification during {sup 192}Ir brachytherapy

Claus E. Andersen; Soeren Kynde Nielsen; Steffen Greilich; Jakob Helt-Hansen; Jacob Christian Lindegaard

A prototype of a new dose-verification system has been developed to facilitate prevention and identification of dose delivery errors in remotely afterloaded brachytherapy. The system allows for automatic online in vivo dosimetry directly in the tumor region using small passive detector probes that fit into applicators such as standard needles or catheters. The system measures the absorbed dose rate (0.1 s time resolution) and total absorbed dose on the basis of radioluminescence (RL) and optically stimulated luminescence (OSL) from aluminum oxide crystals attached to optical fiber cables (1 mm outer diameter). The system was tested in the range from 0 to 4 Gy using a solid-water phantom, a Varian GammaMed Plus 192Ir PDR afterloader, and dosimetry probes inserted into stainless-steel brachytherapy needles. The calibrated system was found to be linear in the tested dose range. The reproducibility (one standard deviation) for RL and OSL measurements was 1.3%. The measured depth-dose profiles agreed well with the theoretical expectations computed with the EGSNRC Monte Carlo code, suggesting that the energy dependence for the dosimeter probes (relative to water) is less than 6% for source-to-probe distances in the range of 2-50 mm. Under certain conditions, the RL signal could be greatly disturbed by the so-called stem signal (i.e., unwanted light generated in the fiber cable upon irradiation). The OSL signal is not subject to this source of error. The tested system appears to be adequate for in vivo brachytherapy dosimetry.


Medical Physics | 2009

Time-resolved in vivo luminescence dosimetry for online error detection in pulsed dose-rate brachytherapy

Claus E. Andersen; S.K. Nielsen; Jacob Christian Lindegaard; Kari Tanderup

PURPOSE The purpose of this study is to present and evaluate a dose-verification protocol for pulsed dose-rate (PDR) brachytherapy based on in vivo time-resolved (1 s time resolution) fiber-coupled luminescence dosimetry. METHODS Five cervix cancer patients undergoing PDR brachytherapy (Varian GammaMed Plus with 192Ir) were monitored. The treatments comprised from 10 to 50 pulses (1 pulse/h) delivered by intracavitary/interstitial applicators (tandem-ring systems and/or needles). For each patient, one or two dosimetry probes were placed directly in or close to the tumor region using stainless steel or titanium needles. Each dosimeter probe consisted of a small aluminum oxide crystal attached to an optical fiber cable (1 mm outer diameter) that could guide radioluminescence (RL) and optically stimulated luminescence (OSL) from the crystal to special readout instrumentation. Positioning uncertainty and hypothetical dose-delivery errors (interchanged guide tubes or applicator movements from +/-5 to +/-15 mm) were simulated in software in order to assess the ability of the system to detect errors. RESULTS For three of the patients, the authors found no significant differences (P>0.01) for comparisons between in vivo measurements and calculated reference values at the level of dose per dwell position, dose per applicator, or total dose per pulse. The standard deviations of the dose per pulse were less than 3%, indicating a stable dose delivery and a highly stable geometry of applicators and dosimeter probes during the treatments. For the two other patients, the authors noted significant deviations for three individual pulses and for one dosimeter probe. These deviations could have been due to applicator movement during the treatment and one incorrectly positioned dosimeter probe, respectively. Computer simulations showed that the likelihood of detecting a pair of interchanged guide tubes increased by a factor of 10 or more for the considered patients when going from integrating to time-resolved dose verification. The likelihood of detecting a +/-15 mm displacement error increased by a factor of 1.5 or more. CONCLUSIONS In vivo fiber-coupled RL/OSL dosimetry based on detectors placed in standard brachytherapy needles was demonstrated. The time-resolved dose-rate measurements were found to provide a good way to visualize the progression and stability of PDR brachytherapy dose delivery, and time-resolved dose-rate measurements provided an increased sensitivity for detection of dose-delivery errors compared with time-integrated dosimetry.


Radiotherapy and Oncology | 2011

Identifying afterloading PDR and HDR brachytherapy errors using real-time fiber-coupled Al2O3:C dosimetry and a novel statistical error decision criterion

Gustavo Kertzscher; Claus E. Andersen; Frank-André Siebert; Søren Kynde Nielsen; Jacob Christian Lindegaard; Kari Tanderup

BACKGROUND AND PURPOSE The feasibility of a real-time in vivo dosimeter to detect errors has previously been demonstrated. The purpose of this study was to: (1) quantify the sensitivity of the dosimeter to detect imposed treatment errors under well controlled and clinically relevant experimental conditions, and (2) test a new statistical error decision concept based on full uncertainty analysis. MATERIALS AND METHODS Phantom studies of two gynecological cancer PDR and one prostate cancer HDR patient treatment plans were performed using tandem ring applicators or interstitial needles. Imposed treatment errors, including interchanged pairs of afterloader guide tubes and 2-20mm source displacements, were monitored using a real-time fiber-coupled carbon doped aluminum oxide (Al(2)O(3):C) crystal dosimeter that was positioned in the reconstructed tumor region. The error detection capacity was evaluated at three dose levels: dwell position, source channel, and fraction. The error criterion incorporated the correlated source position uncertainties and other sources of uncertainty, and it was applied both for the specific phantom patient plans and for a general case (source-detector distance 5-90 mm and position uncertainty 1-4mm). RESULTS Out of 20 interchanged guide tube errors, time-resolved analysis identified 17 while fraction level analysis identified two. Channel and fraction level comparisons could leave 10mm dosimeter displacement errors unidentified. Dwell position dose rate comparisons correctly identified displacements ≥ 5mm. CONCLUSION This phantom study demonstrates that Al(2)O(3):C real-time dosimetry can identify applicator displacements ≥ 5mm and interchanged guide tube errors during PDR and HDR brachytherapy. The study demonstrates the shortcoming of a constant error criterion and the advantage of a statistical error criterion.


Science of The Total Environment | 2001

Numerical modelling of radon-222 entry into houses: an outline of techniques and results.

Claus E. Andersen

Numerical modelling is a powerful tool for studies of soil gas and radon-222 entry into houses. It is the purpose of this paper to review some main techniques and results. In the past, modelling has focused on Darcy flow of soil gas (driven by indoor-outdoor pressure differences) and combined diffusive and advective transport of radon. Models of different complexity have been used. The simpler ones are finite-difference models with one or two spatial dimensions. The more complex models allow for full three-dimensional and time dependency. Advanced features include: soil heterogeneity, anisotropy, fractures, moisture, non-uniform soil temperature, non-Darcy flow of gas, and flow caused by changes in the atmospheric pressure. Numerical models can be used to estimate the importance of specific factors for radon entry. Models are also helpful when results obtained in special laboratory or test structure experiments need to be extrapolated to more general situations (e.g. to real houses or even to other soil-gas pollutants). Finally, models provide a cost-effective test bench for improved designs of radon prevention systems. The paper includes a summary of transport equations and boundary conditions. As an illustrative example, radon entry is calculated for a standard slab-on-grade house.


Physics in Medicine and Biology | 2011

Characterizing a pulse-resolved dosimetry system for complex radiotherapy beams using organic scintillators

Anders Ravnsborg Beierholm; Rickard Ottosson; Lars René Lindvold; C.F. Behrens; Claus E. Andersen

A fast-readout dosimetry system based on fibre-coupled organic scintillators has been developed for the purpose of conducting point measurements of absorbed dose in radiotherapy beams involving high spatial and temporal dose gradients. The system measures the dose for each linac radiation pulse with millimetre spatial resolution. To demonstrate the applicability of the system in complex radiotherapy fields, output factors and per cent depth dose measurements were performed in solid water for a 6 MV photon beam and compared with Monte Carlo simulated doses for square fields down to 0.6 cm × 0.6 cm size. No significant differences between measurements and simulations were observed. The temporal resolution of the system was demonstrated by measuring dose per pulse, beam start-up transients and the quality factor for 6 MV. The precision of dose per pulse measurements was within 2.7% (1 SD) for a 10 cm × 10 cm field at 10 cm depth. The dose per pulse behaviour compared well with linac target current measurements and accumulated dose measurements, and the system was able to resolve transient dose delivery differences between two Varian linac builds. The system therefore shows promise for reference dosimetry and quality assurance of complex radiotherapy treatments.


Science of The Total Environment | 2001

Mapping indoor radon-222 in Denmark: design and test of the statistical model used in the second nationwide survey

Claus E. Andersen; Kaare Ulbak; Anders Damkjær; Peter Kirkegaard; Peter Gravesen

In Denmark, a new survey of indoor radon-222 has been carried out, 1-year alpha track measurements (CR-39) have been made in 3019 single-family houses. There are from 3 to 23 house measurements in each of the 275 municipalities. Within each municipality, houses have been selected randomly. One important outcome of the survey is the prediction of the fraction of houses in each municipality with an annual average radon concentration above 200 Bq m(-3). To obtain the most accurate estimate and to assess the associated uncertainties, a statistical model has been developed. The purpose of this paper is to describe the design of this model, and to report results of model tests. The model is based on a transformation of the data to normality and on analytical (conditionally) unbiased estimators of the quantities of interest. Bayesian statistics are used to minimize the effect of small sample size. In each municipality, the correction is dependent on the fraction of area where sand and gravel is a dominating surface geology. The uncertainty analysis is done with a Monte-Carlo technique. It is demonstrated that the weighted sum of all municipality model estimates of fractions above 200 Bq m(-3) (3.9% with 95%-confidence interval = [3.4,4.5]) is consistent with the weighted sum of the observations for Denmark taken as a whole (4.6% with 95%-confidence interval = [3.8,5.6]). The total number of single-family houses within each municipality is used as weight. Model estimates are also found to be consistent with observations at the level of individual counties. These typically include a few hundred house measurements. These tests indicate that the model is well suited for its purpose.

Collaboration


Dive into the Claus E. Andersen's collaboration.

Top Co-Authors

Avatar

C.F. Behrens

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Steffen Greilich

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lars René Lindvold

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jakob Helt-Hansen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Bøtter-Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Gustavo Kertzscher

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge