Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clemens R. Scherzer is active.

Publication


Featured researches published by Clemens R. Scherzer.


Science Translational Medicine | 2010

PGC-1α, A Potential Therapeutic Target for Early Intervention in Parkinson’s Disease

Bin Zheng; Zhixiang Liao; Joseph J. Locascio; Kristen A. Lesniak; Sarah S. Roderick; Marla L. Watt; Aron Charles Eklund; Yanli Zhang-James; Peter D. Kim; Michael A. Hauser; Edna Grünblatt; Linda B. Moran; Silvia A. Mandel; Peter Riederer; Renee M. Miller; Howard J. Federoff; Ullrich Wüllner; Spyridon Papapetropoulos; Moussa B. H. Youdim; Ippolita Cantuti-Castelvetri; Anne B. Young; Jeffery M. Vance; Richard L. Davis; John C. Hedreen; Charles H. Adler; Thomas G. Beach; Manuel B. Graeber; Frank A. Middleton; Jean-Christophe Rochet; Clemens R. Scherzer

Abnormal expression of genes for energy regulation in Parkinson’s disease patients identifies a master regulator as a possible therapeutic target for early intervention. Getting to the Root of Parkinson’s Disease Parkinson’s disease (PD) is a debilitating neurodegenerative disorder that results in the loss of dopamine neurons in the substantia nigra of the brain. Degeneration of these movement-related neurons predictably causes rigidity, slowness of movement, and resting tremor, but patients also show cognitive changes. Although gene mutations have been identified in several families with PD, the cause of the more common sporadic form is not known. Certain environmental factors, such as exposure to the pesticide rotenone, combined with a genetic susceptibility, are thought to confer risk for developing PD. A key pathological feature seen in postmortem brain tissue from PD patients is Lewy bodies, neuronal inclusions containing clumps of the α-synuclein protein (which is mutated in familial PD), as well as damaged mitochondria. Taking a systems biology approach to pinpoint the root cause of PD, Zheng et al. now implicate altered activity of the master transcription factor PGC-1α and the genes it regulates in the early stages of PD pathogenesis. To detect new sets of genes that may be associated with PD, the investigators did a meta-analysis of 17 independent genome-wide gene expression microarray studies that had been performed on a total of 322 postmortem brain tissue samples and 88 blood samples. The samples came from presymptomatic and symptomatic PD patients, as well as from control individuals who did not show any neurological deficits at autopsy. Nine genome-wide expression studies were conducted either on dopaminergic neurons obtained by laser capture from substantia nigra (three studies) or on substantia nigra homogenates (six studies). The authors then used a powerful tool called Gene Set Enrichment Analysis to sift through 522 gene sets (a gene set is a group of genes involved in one biological pathway or process). At the end of this tour-de-force analysis, they identified 10 gene sets that were all associated with PD. The gene sets with the strongest association contained nuclear genes encoding subunits of the electron transport chain proteins found in mitochondria. These genes all showed decreased expression in substantia nigra dopaminergic neurons (obtained by laser capture) even in the earliest stages of PD. Furthermore, a second gene set associated with PD and also underexpressed in the earliest stages of PD encodes enzymes involved in glucose metabolism. These results are compelling because many studies have already implicated dysfunctional mitochondria and altered energy metabolism as well as defective glucose metabolism in PD. The authors realized that these gene sets had in common the master transcriptional regulator, PGC-1α, and surmised that disruption of PGC-1α expression might be a root cause of PD. They tested this hypothesis in cultured dopaminergic neurons from embryonic rat midbrain forced to express a mutant form of α-synuclein. Overexpression of PGC-1α in these neurons resulted in activation of electron transport genes and protection against neuronal damage induced by mutant α-synuclein. In other cultured neurons treated with rotenone, overexpression of PGC-1α also was protective, blocking pesticide-induced neuronal cell death. These exciting findings identify altered expression of PGC-1α and the genes it regulates as key players during early PD pathogenesis. This potential new target could be exploited therapeutically to interfere with the pathological process during the earliest stages before permanent damage and neuronal loss occurs. Parkinson’s disease affects 5 million people worldwide, but the molecular mechanisms underlying its pathogenesis are still unclear. Here, we report a genome-wide meta-analysis of gene sets (groups of genes that encode the same biological pathway or process) in 410 samples from patients with symptomatic Parkinson’s and subclinical disease and healthy controls. We analyzed 6.8 million raw data points from nine genome-wide expression studies, and 185 laser-captured human dopaminergic neuron and substantia nigra transcriptomes, followed by two-stage replication on three platforms. We found 10 gene sets with previously unknown associations with Parkinson’s disease. These gene sets pinpoint defects in mitochondrial electron transport, glucose utilization, and glucose sensing and reveal that they occur early in disease pathogenesis. Genes controlling cellular bioenergetics that are expressed in response to peroxisome proliferator–activated receptor γ coactivator-1α (PGC-1α) are underexpressed in Parkinson’s disease patients. Activation of PGC-1α results in increased expression of nuclear-encoded subunits of the mitochondrial respiratory chain and blocks the dopaminergic neuron loss induced by mutant α-synuclein or the pesticide rotenone in cellular disease models. Our systems biology analysis of Parkinson’s disease identifies PGC-1α as a potential therapeutic target for early intervention.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Molecular markers of early Parkinson's disease based on gene expression in blood

Clemens R. Scherzer; Aron Charles Eklund; Lee Jae Morse; Zhixiang Liao; Joseph J. Locascio; Daniel Fefer; Michael A. Schwarzschild; Michael G. Schlossmacher; Michael A. Hauser; Jeffery M. Vance; Lewis Sudarsky; David G. Standaert; John H. Growdon; Roderick V. Jensen; Steven R. Gullans

Parkinsons disease (PD) progresses relentlessly and affects five million people worldwide. Laboratory tests for PD are critically needed for developing treatments designed to slow or prevent progression of the disease. We performed a transcriptome-wide scan in 105 individuals to interrogate the molecular processes perturbed in cellular blood of patients with early-stage PD. The molecular multigene marker here identified is associated with risk of PD in 66 samples of the training set comprising healthy and disease controls [third tertile cross-validated odds ratio of 5.7 (P for trend 0.005)]. It is further validated in 39 independent test samples [third tertile odds ratio of 5.1 (P for trend 0.04)]. Insights into disease-linked processes detectable in peripheral blood are offered by 22 unique genes differentially expressed in patients with PD versus healthy individuals. These include the cochaperone ST13, which stabilizes heat-shock protein 70, a modifier of α-synuclein misfolding and toxicity. ST13 messenger RNA copies are lower in patients with PD (mean ± SE 0.59 ± 0.05) than in controls (0.96 ± 0.09) (P = 0.002) in two independent populations. Thus, gene expression signals measured in blood can facilitate the development of biomarkers for PD.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer's disease

Marta M. Lipinski; Bin Zheng; Tao Lu; Zhenyu Yan; Bénédicte F. Py; Aylwin Ng; Ramnik J. Xavier; Cheng Li; Bruce A. Yankner; Clemens R. Scherzer; Junying Yuan

Dysregulation of autophagy, a cellular catabolic mechanism essential for degradation of misfolded proteins, has been implicated in multiple neurodegenerative diseases. However, the mechanisms that lead to the autophagy dysfunction are still not clear. Based on the results of a genome-wide screen, we show that reactive oxygen species (ROS) serve as common mediators upstream of the activation of the type III PI3 kinase, which is critical for the initiation of autophagy. Furthermore, ROS play an essential function in the induction of the type III PI3 kinase and autophagy in response to amyloid β peptide, the main pathogenic mediator of Alzheimers disease (AD). However, lysosomal blockage also caused by Aβ is independent of ROS. In addition, we demonstrate that autophagy is transcriptionally down-regulated during normal aging in the human brain. Strikingly, in contrast to normal aging, we observe transcriptional up-regulation of autophagy in the brains of AD patients, suggesting that there might be a compensatory regulation of autophagy. Interestingly, we show that an AD drug and an AD drug candidate have inhibitory effects on autophagy, raising the possibility that decreasing input into the lysosomal system may help to reduce cellular stress in AD. Finally, we provide a list of candidate drug targets that can be used to safely modulate levels of autophagy without causing cell death.


Proceedings of the National Academy of Sciences of the United States of America | 2008

GATA transcription factors directly regulate the Parkinson's disease-linked gene α-synuclein

Clemens R. Scherzer; Jeffrey A. Grass; Zhixiang Liao; Imelda Pepivani; Bin Zheng; Aron Charles Eklund; Paul A. Ney; Juliana Ng; Meghan McGoldrick; Brit Mollenhauer; Emery H. Bresnick; Michael G. Schlossmacher

Increased α-synuclein gene (SNCA) dosage due to locus multiplication causes autosomal dominant Parkinsons disease (PD). Variation in SNCA expression may be critical in common, genetically complex PD but the underlying regulatory mechanism is unknown. We show that SNCA and the heme metabolism genes ALAS2, FECH, and BLVRB form a block of tightly correlated gene expression in 113 samples of human blood, where SNCA naturally abounds (validated P = 1.6 × 10−11, 1.8 × 10−10, and 6.6 × 10−5). Genetic complementation analysis revealed that these four genes are co-induced by the transcription factor GATA-1. GATA-1 specifically occupies a conserved region within SNCA intron-1 and directly induces a 6.9-fold increase in α-synuclein. Endogenous GATA-2 is highly expressed in substantia nigra vulnerable to PD, occupies intron-1, and modulates SNCA expression in dopaminergic cells. This critical link between GATA factors and SNCA may enable therapies designed to lower α-synuclein production.


Annals of Neurology | 2012

Meta‐analysis of Parkinson's Disease: Identification of a novel locus, RIT2

Nathan Pankratz; Gary W. Beecham; Anita L. DeStefano; Ted M. Dawson; Kimberly F. Doheny; Stewart A. Factor; Taye H. Hamza; Albert Y. Hung; Bradley T. Hyman; Adrian J. Ivinson; Dmitri Krainc; Jeanne C. Latourelle; Lorraine N. Clark; Karen Marder; Eden R. Martin; Richard Mayeux; Owen A. Ross; Clemens R. Scherzer; David K. Simon; Caroline M. Tanner; Jeffery M. Vance; Zbigniew K. Wszolek; Cyrus P. Zabetian; Richard H. Myers; Haydeh Payami; William K. Scott; Tatiana Foroud

Genome‐wide association (GWAS) methods have identified genes contributing to Parkinsons disease (PD); we sought to identify additional genes associated with PD susceptibility.


The Journal of Comparative Neurology | 1998

Expression of N-Methyl-D-Aspartate receptor subunit mRNAs in the human brain: Hippocampus and cortex

Clemens R. Scherzer; G.B. Landwehrmeyer; Julie A. Kerner; Timothy J. Counihan; Christoph M. Kosinski; David G. Standaert; Lorrie P. Daggett; G. Veliçelebi; John B. Penney; Anne B. Young

N‐methyl‐D‐aspartate receptor (NR) activation in the hippocampus and neocortex plays a central role in memory and cognitive function. We analyzed the cellular expression of the five NR subunit (NR1 and NR2A‐D) mRNAs in these regions with in situ hybridization and human ribonucleotide probes. Film autoradiograms demonstrated a distinct pattern of hybridization signal in the hippocampal complex and the neocortex with probes for NR1, NR2A, and NR2B mRNA. NR2C and NR2D probes yielded scattered signals without a distinct organization. At the emulsion level, the NR1 probe produced high‐density hybridization signals across the hippocampal complex. NR2A mRNA was higher in dentate granule cells and pyramidal cells in CA1 and subiculum compared to hilus neurons. NR2B mRNA expression was moderate throughout, with higher expression in dentate granule cells, CA1 and CA3 pyramidal cells than in hilus neurons. In the hippocampal complex, the NR2C probe signal was not different from background in any region, whereas the NR2D probe signal resulted in low to moderate grain densities. We analyzed NR subunit mRNA expression in the prefrontal, parietal, primary visual, and motor cortices. All areas displayed strong NR1 hybridization signals. NR2A and NR2B mRNAs were expressed in cortical areas and layers. NR2C mRNA was expressed at low levels in distinct layers that differed by region and the NR2D signal was equally moderate throughout all regions. Pyramidal cells in both hippocampus and neocortex express NR1, NR2A, NR2B, and, to a lesser extent, NR2D mRNA. Interneurons or granular layer neurons and some glial cells express NR2C mRNA. J. Comp. Neurol. 390:75–90, 1998.


Journal of Biological Chemistry | 2010

Selective translational control of the Alzheimer amyloid precursor protein transcript by iron regulatory protein-1

Hyun Hee Cho; Catherine M. Cahill; Charles R. Vanderburg; Clemens R. Scherzer; Bin Wang; Xudong Huang; Jack T. Rogers

Iron influx increases the translation of the Alzheimer amyloid precursor protein (APP) via an iron-responsive element (IRE) RNA stem loop in its 5′-untranslated region. Equal modulated interaction of the iron regulatory proteins (IRP1 and IRP2) with canonical IREs controls iron-dependent translation of the ferritin subunits. However, our immunoprecipitation RT-PCR and RNA binding experiments demonstrated that IRP1, but not IRP2, selectively bound the APP IRE in human neural cells. This selective IRP1 interaction pattern was evident in human brain and blood tissue from normal and Alzheimer disease patients. We computer-predicted an optimal novel RNA stem loop structure for the human, rhesus monkey, and mouse APP IREs with reference to the canonical ferritin IREs but also the IREs encoded by erythroid heme biosynthetic aminolevulinate synthase and Hif-2α mRNAs, which preferentially bind IRP1. Selective 2′-hydroxyl acylation analyzed by primer extension analysis was consistent with a 13-base single-stranded terminal loop and a conserved GC-rich stem. Biotinylated RNA probes deleted of the conserved CAGA motif in the terminal loop did not bind to IRP1 relative to wild type probes and could no longer base pair to form a predicted AGA triloop. An AGU pseudo-triloop is key for IRP1 binding to the canonical ferritin IREs. RNA probes encoding the APP IRE stem loop exhibited the same high affinity binding to rhIRP1 as occurs for the H-ferritin IRE (35 pm). Intracellular iron chelation increased binding of IRP1 to the APP IRE, decreasing intracellular APP expression in SH-SY5Y cells. Functionally, shRNA knockdown of IRP1 caused increased expression of neural APP consistent with IRP1-APP IRE-driven translation.


Nature Communications | 2014

MHC-I expression renders catecholaminergic neurons susceptible to T-cell-mediated degeneration

Carolina Cebrian; Fabio A Zucca; Pierluigi Mauri; Julius A. Steinbeck; Lorenz Studer; Clemens R. Scherzer; Ellen Kanter; Sadna Budhu; Jonathan Mandelbaum; Jean Paul Vonsattel; Luigi Zecca; John D. Loike; David Sulzer

Subsets of rodent neurons are reported to express major histocompatibilty complex class I (MHC-I), but such expression has not been reported in normal adult human neurons. Here we provide evidence from immunolabel, RNA expression, and mass spectrometry analysis of postmortem samples that human catecholaminergic substantia nigra and locus coeruleus neurons express MHC-I, and that this molecule is inducible in human stem cell derived dopamine (DA) neurons. Catecholamine murine cultured neurons are more responsive to induction of MHC-I by gamma-interferon than other neuronal populations. Neuronal MHC-I is also induced by factors released from microglia activated by neuromelanin or alpha-synuclein, or high cytosolic DA and/or oxidative stress. DA neurons internalize foreign ovalbumin and display antigen derived from this protein by MHC-I, which triggers DA neuronal death in the presence of appropriate cytotoxic T-cells. Thus, neuronal MHC-I can trigger antigenic response, and catecholamine neurons may be particularly susceptible to T cell-mediated cytotoxic attack.


PLOS Genetics | 2010

Lysosomal Dysfunction Promotes Cleavage and Neurotoxicity of Tau In Vivo

Vikram Khurana; Ilan Elson-Schwab; Tudor A. Fulga; Katherine A. Sharp; Carin A. Loewen; Erin Mulkearns; Jaana Tyynelä; Clemens R. Scherzer; Mel B. Feany

Expansion of the lysosomal system, including cathepsin D upregulation, is an early and prominent finding in Alzheimers disease brain. Cell culture studies, however, have provided differing perspectives on the lysosomal connection to Alzheimers disease, including both protective and detrimental influences. We sought to clarify and molecularly define the connection in vivo in a genetically tractable model organism. Cathepsin D is upregulated with age in a Drosophila model of Alzheimers disease and related tauopathies. Genetic analysis reveals that cathepsin D plays a neuroprotective role because genetic ablation of cathepsin D markedly potentiates tau-induced neurotoxicity. Further, generation of a C-terminally truncated form of tau found in Alzheimers disease patients is significantly increased in the absence of cathepsin D. We show that truncated tau has markedly increased neurotoxicity, while solubility of truncated tau is decreased. Importantly, the toxicity of truncated tau is not affected by removal of cathepsin D, providing genetic evidence that modulation of neurotoxicity by cathepsin D is mediated through C-terminal cleavage of tau. We demonstrate that removing cathepsin D in adult postmitotic neurons leads to aberrant lysosomal expansion and caspase activation in vivo, suggesting a mechanism for C-terminal truncation of tau. We also demonstrate that both cathepsin D knockout mice and cathepsin D–deficient sheep show abnormal C-terminal truncation of tau and accompanying caspase activation. Thus, caspase cleavage of tau may be a molecular mechanism through which lysosomal dysfunction and neurodegeneration are causally linked in Alzheimers disease.


The Journal of Comparative Neurology | 1998

Expression of N-Methyl-D-Aspartate receptor subunit mRNAs in the human brain: Striatum and globus pallidus

Christoph M. Kosinski; David G. Standaert; Timothy J. Counihan; Clemens R. Scherzer; Julie A. Kerner; Lorrie P. Daggett; G. Veliçelebi; John B. Penney; Anne B. Young; G. Bernhard Landwehrmeyer

N‐methyl‐D‐aspartate receptors (NRs) play an important role in basal ganglia function. By using in situ hybridization with ribonucleotide probes, we investigated the regional and cellular distribution of NR subunit mRNA expression in the human basal ganglia: caudate nucleus, putamen, lateral globus pallidus (LGP), and medial globus pallidus (MGP). Analysis of both film autoradiograms and emulsion‐dipped slides revealed distinct distribution patterns for each subunit. On film autoradiograms, the signal for NR1, NR2B, and NR2C in the striatum (STR) was higher than in globus pallidus (GP). The NR2D probe gave a stronger signal in GP than in STR. For NR2A we found a signal in all regions. Analysis of emulsion‐dipped sections demonstrated that in striatal neurons, the NR2B signal was higher than in GP neurons. In GP neurons, NR2D was more abundant than in striatal neurons. Despite the relatively low signal on film for NR2C in GP, we found a slightly higher signal in GP per neuron than in STR since in the pallidal areas neurons were sparse but intensely labeled. NR1 and NR2A were more evenly distributed over neurons of STR and GP. Between the different parts of STR and GP, we observed only minor differences in the expression of NRs. In MGP a subpopulation of neurons exhibiting low NR2D signals could be separated from the majority of neurons showing an intense NR2D signal. Since the physiological properties of NRs are dependent on subunit composition, these data suggest a high degree of regional specialization of NR properties in the human basal ganglia. J. Comp. Neurol. 390:63–74, 1998.

Collaboration


Dive into the Clemens R. Scherzer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven R. Gullans

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Zhixiang Liao

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roderick V. Jensen

University of Massachusetts Boston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Standaert

University of Alabama at Birmingham

View shared research outputs
Researchain Logo
Decentralizing Knowledge