Clemens Scheufler
Novartis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clemens Scheufler.
Bioorganic & Medicinal Chemistry Letters | 2008
Achim Schlapbach; Roland Feifel; Stuart Hawtin; Richard Heng; Guido Koch; Henrik Moebitz; Laszlo Revesz; Clemens Scheufler; Juraj Velcicky; Rudolf Waelchli; Christine Huppertz
Pyrrolo-pyrimidones of the general structure 1 were synthesized and evaluated for their potential as MK2 inhibitors. Potent derivatives were discovered which inhibit MK2 in the nanomolar range and show potent inhibition of cytokine release from LPS-stimulated monocytes. These derivatives were shown to inhibit phosphorylation of hsp27, a downstream target of MK2 and are modestly selective in a panel of 28 kinases.
Bioorganic & Medicinal Chemistry Letters | 2010
Juraj Velcicky; Roland Feifel; Stuart Hawtin; Richard Heng; Christine Huppertz; Guido Koch; Markus Kroemer; Henrik Moebitz; Laszlo Revesz; Clemens Scheufler; Achim Schlapbach
New, selective 3-aminopyrazole based MK2-inhibitors were discovered by scaffold hopping strategy. The new derivatives proved to inhibit intracellular phosphorylation of hsp27 as well as LPS-induced TNFalpha release in cells. In addition, selected derivative 14e also inhibited LPS-induced TNFalpha release in vivo.
Bioorganic & Medicinal Chemistry Letters | 2010
Laszlo Revesz; Achim Schlapbach; Reiner Aichholz; Janet Dawson; Roland Feifel; Stuart Hawtin; Amanda Littlewood-Evans; Guido Koch; Markus Kroemer; Henrik Möbitz; Clemens Scheufler; Juraj Velcicky; Christine Huppertz
Spirocyclopropane- and spiroazetidine-substituted tetracycles 13D-E and 16A are described as orally active MK2 inhibitors. The spiroazetidine derivatives are potent MK2 inhibitors with IC(50)<3 nM and inhibit the release of TNFalpha (IC(50)<0.3 microM) from hPBMCs and hsp27 phosphorylation in anisomycin stimulated THP-1 cells. The spirocyclopropane analogues are less potent against MK2 (IC(50)=0.05-0.23 microM), less potent in cells (IC(50)<1.1 microM), but show good oral absorption. Compound 13E (100mg/kg po; bid) showed oral activity in rAIA and mCIA, with significant reduction of swelling and histological score.
ACS Medicinal Chemistry Letters | 2016
Chao Chen; Hugh Zhu; Frédéric Stauffer; Giorgio Caravatti; Susanne Vollmer; Rainer Machauer; Philipp Holzer; Henrik Möbitz; Clemens Scheufler; Martin Klumpp; Ralph Tiedt; Kim S. Beyer; Keith Calkins; Daniel Guthy; Michael Kiffe; Jeff Zhang; Christoph Gaul
Oncogenic MLL fusion proteins aberrantly recruit Dot1L, a histone methyltransferase, to ectopic loci, leading to local hypermethylation of H3K79 and misexpression of HoxA genes driving MLL-rearranged leukemias. Inhibition of the methyltransferase activity of Dot1L in this setting is predicted to reverse aberrant H3K79 methylation, leading to repression of leukemogenic genes and tumor growth inhibition. In the context of our Dot1L drug discovery program, high-throughput screening led to the identification of 2, a weak Dot1L inhibitor with an unprecedented, induced pocket binding mode. A medicinal chemistry campaign, strongly guided by structure-based consideration and ligand-based morphing, enabled the discovery of 12 and 13, potent, selective, and structurally completely novel Dot1L inhibitors.
ACS Medicinal Chemistry Letters | 2016
Clemens Scheufler; Henrik Möbitz; Christoph Gaul; Christian Ragot; Celine Be; César Fernández; Kim S. Beyer; Ralph Tiedt; Frédéric Stauffer
Mixed lineage leukemia (MLL) gene rearrangement induces leukemic transformation by ectopic recruitment of disruptor of telomeric silencing 1-like protein (DOT1L), a lysine histone methyltransferase, leading to local hypermethylation of H3K79 and misexpression of genes (including HoxA), which drive the leukemic phenotype. A weak fragment-based screening hit identified by SPR was cocrystallized with DOT1L and optimized using structure-based ligand optimization to yield compound 8 (IC50 = 14 nM). This series of inhibitors is structurally not related to cofactor SAM and is not interacting within the SAM binding pocket but induces a pocket adjacent to the SAM binding site.
Journal of Biomolecular Screening | 2015
Peter S. Kutchukian; Anne Mai Wassermann; Mika Lindvall; S. Kirk Wright; Johannes Ottl; Jaison Jacob; Clemens Scheufler; Andreas Marzinzik; Natasja Brooijmans; Meir Glick
A first step in fragment-based drug discovery (FBDD) often entails a fragment-based screen (FBS) to identify fragment “hits.” However, the integration of conflicting results from orthogonal screens remains a challenge. Here we present a meta-analysis of 35 fragment-based campaigns at Novartis, which employed a generic 1400-fragment library against diverse target families using various biophysical and biochemical techniques. By statistically interrogating the multidimensional FBS data, we sought to investigate three questions: (1) What makes a fragment amenable for FBS? (2) How do hits from different fragment screening technologies and target classes compare with each other? (3) What is the best way to pair FBS assay technologies? In doing so, we identified substructures that were privileged for specific target classes, as well as fragments that were privileged for authentic activity against many targets. We also revealed some of the discrepancies between technologies. Finally, we uncovered a simple rule of thumb in screening strategy: when choosing two technologies for a campaign, pairing a biochemical and biophysical screen tends to yield the greatest coverage of authentic hits.
Journal of Biomolecular Screening | 2014
Christine Genick; Danielle Barlier; Dominique Monna; Reto Brunner; Celine Be; Clemens Scheufler; Johannes Ottl
For approximately a decade, biophysical methods have been used to validate positive hits selected from high-throughput screening (HTS) campaigns with the goal to verify binding interactions using label-free assays. By applying label-free readouts, screen artifacts created by compound interference and fluorescence are discovered, enabling further characterization of the hits for their target specificity and selectivity. The use of several biophysical methods to extract this type of high-content information is required to prevent the promotion of false positives to the next level of hit validation and to select the best candidates for further chemical optimization. The typical technologies applied in this arena include dynamic light scattering, turbidometry, resonance waveguide, surface plasmon resonance, differential scanning fluorimetry, mass spectrometry, and others. Each technology can provide different types of information to enable the characterization of the binding interaction. Thus, these technologies can be incorporated in a hit-validation strategy not only according to the profile of chemical matter that is desired by the medicinal chemists, but also in a manner that is in agreement with the target protein’s amenability to the screening format. Here, we present the results of screening strategies using biophysics with the objective to evaluate the approaches, discuss the advantages and challenges, and summarize the benefits in reference to lead discovery. In summary, the biophysics screens presented here demonstrated various hit rates from a list of ~2000 preselected, IC50-validated hits from HTS (an IC50 is the inhibitor concentration at which 50% inhibition of activity is observed). There are several lessons learned from these biophysical screens, which will be discussed in this article.
Analytical Biochemistry | 2012
Ying Lin; Hong Fan; Mathias Frederiksen; Kehao Zhao; Lei Jiang; Zhaofu Wang; Shaolian Zhou; Weihui Guo; Jun Gao; Shu Li; Edmund Harrington; Peter Meier; Clemens Scheufler; Yao-Chang Xu; Peter Atadja; Chris Lu; En Li; X. Justin Gu
A homogeneous time-resolved fluorescence (HTRF)-based binding assay has been established to measure the binding of the histone methyltransferase (HMT) G9a to its inhibitor CJP702 (a biotin analog of the known peptide-pocket inhibitor, BIX-01294). This assay was used to characterize G9a inhibitors. As expected, the peptide-pocket inhibitors decreased the G9a-CJP702 binding signal in a concentration-dependent manner. In contrast, the S-adenosyl-L-methionine (SAM)-pocket compounds, SAM and sinefungin, significantly increased the G9a-CJP702 binding signal, whereas S-adenosyl-L-homocysteine (SAH) showed minimal effect. Enzyme kinetic studies showed that CJP702 is an uncompetitive inhibitor (vs. SAM) that has a strong preference for the E:SAM form of the enzyme. Other data presented suggest that the SAM/sinefungin-induced increase in the HTRF signal is secondary to an increased E:SAM or E:sinefungin concentration. Thus, the G9a-CJP702 binding assay not only can be used to characterize the peptide-pocket inhibitors but also can detect the subtle conformational differences induced by the binding of different SAM-pocket compounds. To our knowledge, this is the first demonstration of using an uncompetitive inhibitor as a probe to monitor the conformational change induced by compound binding with an HTRF assay.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Frederic Morvan; Jean-Michel Rondeau; Chao Zou; Giulia Minetti; Clemens Scheufler; Meike Scharenberg; Carsten Jacobi; Pascale Brebbia; Veronique Ritter; Gauthier Toussaint; Claudia Koelbing; Xavier Leber; Alain Schilb; Florian Witte; Sylvie Lehmann; Elke Koch; Sabine Geisse; David J. Glass; Estelle Lach-Trifilieff
Significance We recently reported that activin type II receptors (ActRIIs) blockade using bimagrumab could positively impact muscle wasting in mice and humans. However, the specific role of each individual ActRII at regulating adult muscle mass had not been clarified. Here, we highlight the importance of concomitant neutralization of both ActRIIs in controlling muscle mass. Through comparison with single specificity antibodies, we uncover unique features related to bimagrumab and its neutralizing interactions with both ActRIIA and ActRIIB at the structural and cellular levels and in vivo in adult mice. The need for simultaneous engagement and neutralization of both ActRIIs to generate a strong skeletal muscle response confers unique therapeutic potential to bimagrumab, in the context of muscle wasting conditions. The TGF-β family ligands myostatin, GDF11, and activins are negative regulators of skeletal muscle mass, which have been reported to primarily signal via the ActRIIB receptor on skeletal muscle and thereby induce muscle wasting described as cachexia. Use of a soluble ActRIIB-Fc “trap,” to block myostatin pathway signaling in normal or cachectic mice leads to hypertrophy or prevention of muscle loss, perhaps suggesting that the ActRIIB receptor is primarily responsible for muscle growth regulation. Genetic evidence demonstrates however that both ActRIIB- and ActRIIA-deficient mice display a hypertrophic phenotype. Here, we describe the mode of action of bimagrumab (BYM338), as a human dual-specific anti-ActRIIA/ActRIIB antibody, at the molecular and cellular levels. As shown by X-ray analysis, bimagrumab binds to both ActRIIA and ActRIIB ligand binding domains in a competitive manner at the critical myostatin/activin binding site, hence preventing signal transduction through either ActRII. Myostatin and the activins are capable of binding to both ActRIIA and ActRIIB, with different affinities. However, blockade of either single receptor through the use of specific anti-ActRIIA or anti-ActRIIB antibodies achieves only a partial signaling blockade upon myostatin or activin A stimulation, and this leads to only a small increase in muscle mass. Complete neutralization and maximal anabolic response are achieved only by simultaneous blockade of both receptors. These findings demonstrate the importance of ActRIIA in addition to ActRIIB in mediating myostatin and activin signaling and highlight the need for blocking both receptors to achieve a strong functional benefit.
ACS Medicinal Chemistry Letters | 2017
Henrik Möbitz; Rainer Machauer; Philipp Holzer; Andrea Vaupel; Frédéric Stauffer; Christian Ragot; Giorgio Caravatti; Clemens Scheufler; César Fernández; Ulrich Hommel; Ralph Tiedt; Kim S. Beyer; Chao Chen; Hugh Zhu; Christoph Gaul
Misdirected catalytic activity of histone methyltransferase Dot1L is believed to be causative for a subset of highly aggressive acute leukemias. Targeting the catalytic domain of Dot1L represents a potential therapeutic approach for these leukemias. In the context of a comprehensive Dot1L hit finding strategy, a knowledge-based virtual screen of the Dot1L SAM binding pocket led to the discovery of 2, a non-nucleoside fragment mimicking key interactions of SAM bound to Dot1L. Fragment linking of 2 and 3, an induced back pocket binder identified in earlier studies, followed by careful ligand optimization led to the identification of 7, a highly potent, selective and structurally novel Dot1L inhibitor.