Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clement Douault is active.

Publication


Featured researches published by Clement Douault.


Bioorganic & Medicinal Chemistry Letters | 2011

Discovery of GSK143, a highly potent, selective and orally efficacious spleen tyrosine kinase inhibitor.

John Liddle; Francis Louis Atkinson; Michael David Barker; Paul S. Carter; Neil R. Curtis; Robert P. Davis; Clement Douault; Marion C. Dickson; Dorothy Elwes; Neil Stuart Garton; Matthew Gray; Thomas G. Hayhow; Clare I. Hobbs; Emma Jones; Stuart G. Leach; Karen Leavens; Huw D. Lewis; Scott McCleary; Margarete Neu; Vipulkumar Kantibhai Patel; Alex G.S. Preston; Cesar Ramirez-Molina; Tracy Jane Shipley; Philip Alan Skone; Nick Smithers; Donald O. Somers; Ann Louise Walker; Robert J. Watson; Gordon G. Weingarten

The lead optimisation of the diaminopyrimidine carboxamide series of spleen tyrosine kinase inhibitors is described. The medicinal chemistry strategy was focused on optimising the human whole blood activity whilst achieving a sufficient margin over liability kinases and hERG activity. GSK143 is a potent and highly selective SYK inhibitor showing good efficacy in the rat Arthus model.


Journal of Medicinal Chemistry | 2015

Fragment-Based Discovery of Low-Micromolar ATAD2 Bromodomain Inhibitors

Emmanuel Hubert Demont; Chun-wa Chung; Rebecca C. Furze; Paola Grandi; Anne-Marie Michon; Chris Wellaway; Nathalie Barrett; Angela Bridges; Peter D. Craggs; Hawa Diallo; David P. Dixon; Clement Douault; Amanda Emmons; Emma Jones; Bhumika Karamshi; Kelly Locke; Darren Jason Mitchell; Bernadette Mouzon; Rab K. Prinjha; Andy D. Roberts; Robert J. Sheppard; Robert J. Watson; Paul Bamborough

Overexpression of ATAD2 (ATPase family, AAA domain containing 2) has been linked to disease severity and progression in a wide range of cancers, and is implicated in the regulation of several drivers of cancer growth. Little is known of the dependence of these effects upon the ATAD2 bromodomain, which has been categorized as among the least tractable of its class. The absence of any potent, selective inhibitors limits clear understanding of the therapeutic potential of the bromodomain. Here, we describe the discovery of a hit from a fragment-based targeted array. Optimization of this produced the first known micromolar inhibitors of the ATAD2 bromodomain.


Journal of Medicinal Chemistry | 2015

Structure-Based Optimization of Naphthyridones into Potent ATAD2 Bromodomain Inhibitors

Paul Bamborough; Chun-wa Chung; Rebecca C. Furze; Paola Grandi; Anne-Marie Michon; Robert J. Sheppard; Heather Anne Barnett; Hawa Diallo; David P. Dixon; Clement Douault; Emma Jones; Bhumika Karamshi; Darren Jason Mitchell; Rab K. Prinjha; Christina Rau; Robert J. Watson; Thilo Werner; Emmanuel Hubert Demont

ATAD2 is a bromodomain-containing protein whose overexpression is linked to poor outcomes in a number of different cancer types. To date, no potent and selective inhibitors of the bromodomain have been reported. This article describes the structure-based optimization of a series of naphthyridones from micromolar leads with no selectivity over the BET bromodomains to inhibitors with sub-100 nM ATAD2 potency and 100-fold BET selectivity.


Angewandte Chemie | 2016

A Chemical Probe for the ATAD2 Bromodomain.

Paul Bamborough; Chun-wa Chung; Emmanuel Demont; Rebecca C. Furze; Andrew J. Bannister; Ka Hing Che; Hawa Diallo; Clement Douault; Paola Grandi; Tony Kouzarides; Anne-Marie Michon; Darren Jason Mitchell; Rab K. Prinjha; Christina Rau; Samuel Robson; Robert J. Sheppard; Richard J. Upton; Robert J. Watson

ATAD2 is a cancer-associated protein whose bromodomain has been described as among the least druggable of that target class. Starting from a potent lead, permeability and selectivity were improved through a dual approach: 1) using CF2 as a sulfone bio-isostere to exploit the unique properties of fluorine, and 2) using 1,3-interactions to control the conformation of a piperidine ring. This resulted in the first reported low-nanomolar, selective and cell permeable chemical probe for ATAD2.


Journal of Medicinal Chemistry | 2016

Cell Penetrant Inhibitors of the KDM4 and KDM5 Families of Histone Lysine Demethylases. 1. 3-Amino-4-pyridine Carboxylate Derivatives

Susan Marie Westaway; Alex G.S. Preston; Michael David Barker; Fiona Brown; Jack A. Brown; Matthew Campbell; Chun-wa Chung; Hawa Diallo; Clement Douault; Gerard Drewes; Robert Eagle; Laurie J. Gordon; Carl Haslam; Thomas G. Hayhow; Philip G. Humphreys; Gerard Joberty; Roy Katso; Laurens Kruidenier; Melanie Leveridge; John Liddle; Julie Mosley; Marcel Muelbaier; Rebecca Randle; Inma Rioja; Anne Rueger; Gail A. Seal; Robert J. Sheppard; Onkar M. P. Singh; Joanna Taylor; Pamela J. Thomas

Optimization of KDM6B (JMJD3) HTS hit 12 led to the identification of 3-((furan-2-ylmethyl)amino)pyridine-4-carboxylic acid 34 and 3-(((3-methylthiophen-2-yl)methyl)amino)pyridine-4-carboxylic acid 39 that are inhibitors of the KDM4 (JMJD2) family of histone lysine demethylases. Compounds 34 and 39 possess activity, IC50 ≤ 100 nM, in KDM4 family biochemical (RFMS) assays with ≥ 50-fold selectivity against KDM6B and activity in a mechanistic KDM4C cell imaging assay (IC50 = 6-8 μM). Compounds 34 and 39 are also potent inhibitors of KDM5C (JARID1C) (RFMS IC50 = 100-125 nM).


Bioorganic & Medicinal Chemistry Letters | 2010

Pyrazolopyridazine alpha-2-delta-1 ligands for the treatment of neuropathic pain

James Myatt; Mark P. Healy; Gianpaolo Bravi; Andrew Billinton; Christopher Norbert Johnson; Kim L. Matthews; Karamjit S. Jandu; Wenjing Meng; Anne Hersey; David G. Livermore; Clement Douault; Jason Witherington; Rino A. Bit; James E. Rowedder; Nick M. Clayton

Optimization of the novel alpha-2-delta-1 ligand 4 provided compounds 37 and 38 which have improved DMPK profiles, good in vivo analgesic activity and in vitro selectivity over alpha-2-delta-2. An in-house P-gp prediction programme and the MetaSite software package were used to help solve the specific problems of high P-gp efflux and high in vivo clearance.


Bioorganic & Medicinal Chemistry Letters | 2016

Optimisation of a novel series of potent and orally bioavailable azanaphthyridine SYK inhibitors

Neil Stuart Garton; Michael David Barker; Robert P. Davis; Clement Douault; Edward Hooper-Greenhill; Emma Jones; Huw D. Lewis; John Liddle; Dave Lugo; Scott McCleary; Alex G.S. Preston; Cesar Ramirez-Molina; Margarete Neu; Tracy Jane Shipley; Don O. Somers; Robert J. Watson; David Wilson

The optimisation of the azanaphthyridine series of Spleen Tyrosine Kinase inhibitors is described. The medicinal chemistry strategy was focused on optimising the human whole blood activity whilst achieving a sufficient margin over hERG activity. A good pharmacokinetic profile was achieved by modification of the pKa. Morpholine compound 32 is a potent SYK inhibitor showing moderate selectivity, good oral bioavailability and good efficacy in the rat Arthus model but demonstrated a genotoxic potential in the Ames assay.


Archive | 2011

7-(1h-pyrazol-4-yl)-1,6-naphthyridine compounds as syk inhibitors

Francis Louis Atkinson; Michael David Barker; Clement Douault; Neil Stuart Garton; John Liddle; Vipulkumar Kantibhai Patel; Alexander G Preston; David M. Wilson


Archive | 2012

Demethylase enzymes inhibitors

Michael David Barker; Matthew Campbell; Hawa Diallo; Clement Douault; Philip G. Humphreys; John Liddle; Robert John Sheppard; Pamela J. Thomas; David M. Wilson


Archive | 2012

2 - (azaindol- 2 -yl) benz imidazoles as pad4 inhibitors

Stephen John Atkinson; Michael David Barker; Matthew Campbell; Hawa Diallo; Clement Douault; Neil Stuart Garton; John Liddle; Robert John Sheppard; Ann Louise Walker; Christopher Roland Wellaway; David M. Wilson

Collaboration


Dive into the Clement Douault's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David M. Wilson

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge