Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cleo Bertelsmeier is active.

Publication


Featured researches published by Cleo Bertelsmeier.


Ecology Letters | 2012

Impacts of climate change on the future of biodiversity

Céline Bellard; Cleo Bertelsmeier; Paul W. Leadley; Wilfried Thuiller; Franck Courchamp

Many studies in recent years have investigated the effects of climate change on the future of biodiversity. In this review, we first examine the different possible effects of climate change that can operate at individual, population, species, community, ecosystem and biome scales, notably showing that species can respond to climate change challenges by shifting their climatic niche along three non-exclusive axes: time (e.g. phenology), space (e.g. range) and self (e.g. physiology). Then, we present the principal specificities and caveats of the most common approaches used to estimate future biodiversity at global and sub-continental scales and we synthesise their results. Finally, we highlight several challenges for future research both in theoretical and applied realms. Overall, our review shows that current estimates are very variable, depending on the method, taxonomic group, biodiversity loss metrics, spatial scales and time periods considered. Yet, the majority of models indicate alarming consequences for biodiversity, with the worst-case scenarios leading to extinction rates that would qualify as the sixth mass extinction in the history of the earth.


Biological Invasions | 2014

The 100th of the world’s worst invasive alien species

Gloria M. Luque; Céline Bellard; Cleo Bertelsmeier; Elsa Bonnaud; Piero Genovesi; Daniel Simberloff; Franck Courchamp

Abstract Biological invasions are among the greatest threats to global biodiversity, but in contrast to most other global threats, they suffer from specific communication issues. Our paper presents the first new addition to the widely cited IUCN list of “100 of the world’s worst invasive species”, a list created a decade ago in response to these communication issues. We briefly present this list, the recent removal of one species from that list, and the rationale to include a novel, 100th species to replace it. The new species of this list, giant salvinia (Salvinia molesta), was chosen by the community of invasion biologists (over 650 experts from over 60 countries). This new addition to the list will draw public attention to the damage caused by invasive alien species and it will help stimulate the necessary discussion of this critical issue in science and policy circles.


Biological Invasions | 2016

Complex patterns of global spread in invasive insects: eco-evolutionary and management consequences.

Jeffrey R. Garnas; Marie-Anne Auger-Rozenberg; Alain Roques; Cleo Bertelsmeier; Michael J. Wingfield; Davina L. Saccaggi; Helen E. Roy; Bernard Slippers

Abstract The advent of simple and affordable tools for molecular identification of novel insect invaders and assessment of population diversity has changed the face of invasion biology in recent years. The widespread application of these tools has brought with it an emerging understanding that patterns in biogeography, introduction history and subsequent movement and spread of many invasive alien insects are far more complex than previously thought. We reviewed the literature and found that for a number of invasive insects, there is strong and growing evidence that multiple introductions, complex global movement, and population admixture in the invaded range are commonplace. Additionally, historical paradigms related to species and strain identities and origins of common invaders are in many cases being challenged. This has major consequences for our understanding of basic biology and ecology of invasive insects and impacts quarantine, management and biocontrol programs. In addition, we found that founder effects rarely limit fitness in invasive insects and may benefit populations (by purging harmful alleles or increasing additive genetic variance). Also, while phenotypic plasticity appears important post-establishment, genetic diversity in invasive insects is often higher than expected and increases over time via multiple introductions. Further, connectivity among disjunct regions of global invasive ranges is generally far higher than expected and is often asymmetric, with some populations contributing disproportionately to global spread. We argue that the role of connectivity in driving the ecology and evolution of introduced species with multiple invasive ranges has been historically underestimated and that such species are often best understood in a global context.


Trends in Ecology and Evolution | 2017

Invasion Biology: Specific Problems and Possible Solutions

Franck Courchamp; Alice Fournier; Céline Bellard; Cleo Bertelsmeier; Elsa Bonnaud; Jonathan M. Jeschke; James C. Russell

Biological invasions have been unambiguously shown to be one of the major global causes of biodiversity loss. Despite the magnitude of this threat and recent scientific advances, this field remains a regular target of criticism - from outright deniers of the threat to scientists questioning the utility of the discipline. This unique situation, combining internal strife and an unaware society, greatly hinders the progress of invasion biology. It is crucial to identify the specificities of this discipline that lead to such difficulties. We outline here 24 specificities and problems of this discipline and categorize them into four groups: understanding, alerting, supporting, and implementing the issues associated with invasive alien species, and we offer solutions to tackle these problems and push the field forward.


PLOS ONE | 2013

Climate Change May Boost the Invasion of the Asian Needle Ant

Cleo Bertelsmeier; Benoît S. Guénard; Franck Courchamp

Following its introduction from Asia to the USA, the Asian needle ant (Pachycondyla chinensis) is rapidly spreading into a wide range of habitats with great negative ecological affects. In addition, the species is a concern for human health because of its powerful, sometimes deadly, sting. Here, we assessed the potential of P. chinensis to spread further and to invade entirely new regions. We used species distribution models to assess suitable areas under current climatic conditions and in 2020, 2050 and 2080. With a consensus model, combining five different modelling techniques, three Global Circulation (climatic) Models and two CO2 emission scenarios, we generated world maps with suitable climatic conditions. Our models suggest that the species currently has a far greater potential distribution than its current exotic range, including large parts of the world landmass, including Northeast America, Southeast Asia and Southeast America. Climate change is predicted to greatly exacerbate the risk of P. chinensis invasion by increasing the suitable landmass by 64.9% worldwide, with large increases in Europe (+210.1%), Oceania (+75.1%), North America (+74.9%) and Asia (+62.7%). The results of our study suggest P. chinensis deserves increased attention, especially in the light of on-going climate change.


Biological Invasions | 2015

Different behavioural strategies among seven highly invasive ant species

Cleo Bertelsmeier; Amaury Avril; Olivier Blight; Amandine Confais; Lise Diez; Hervé Jourdan; Jérôme Orivel; Noémie Saint Germès; Franck Courchamp

Ants figure prominently among the worst invasive species because of their enormous ecological and economic impacts. However, it remains to be investigated which species would be behaviourally dominant when confronted with another invasive ant species, should two species be introduced in the same area. In the future, many regions might have suitable environmental conditions for several invasive ant species, as predicted under climate change scenarios. Here, we explored interactions among several highly invasive ant species, which have been shown to have overlapping suitable areas. The aim of this study was to evaluate the performance in interference competition of seven of the world’s worst invasive ant species (Anoplolepis gracilipes, Paratrechina longicornis, Myrmica rubra, Linepithema humile, Lasius neglectus, Wasmannia auropunctata and Pheidole megacephala). We conducted pairwise confrontations, testing the behaviour of each species against each of the six other species (in total 21 dyadic confrontations). We used single worker confrontations and group interactions of 10 versus 10 individuals to establish a dominance hierarchy among these invasive ant species. We discovered two different behavioural strategies among these invasive ants: three species displayed evasive or indifferent behaviour when individuals or groups were confronted (A. gracilipes, Pa. longicornis, M. rubra), while the four remaining species were highly aggressive during encounters and formed a linear dominance hierarchy. These findings contrast with the widespread view that invasive ants form a homogeneous group of species displaying the ‘invasive syndrome’, which includes generally aggressive behaviour. The dominance hierarchy among the four aggressive species may be used to predict the outcome of future competitive interactions under some circumstances. Yet, the existence of several behavioural strategies renders such a prediction less straightforward.


Nature Ecology and Evolution | 2017

Recent human history governs global ant invasion dynamics

Cleo Bertelsmeier; Sébastien Ollier; Andrew M. Liebhold; Laurent Keller

Human trade and travel are breaking down biogeographic barriers, resulting in shifts in the geographical distribution of organisms, yet it remains largely unknown whether different alien species generally follow similar spatiotemporal colonization patterns and how such patterns are driven by trends in global trade. Here, we analyse the global distribution of 241 alien ant species and show that these species comprise four distinct groups that inherently differ in their worldwide distribution from that of native species. The global spread of these four distinct species groups has been greatly, but differentially, influenced by major events in recent human history, in particular historical waves of globalization (approximately 1850–1914 and 1960 to present), world wars and global recessions. Species in these four groups also differ in six important morphological and life-history traits and their degree of invasiveness. Combining spatiotemporal distribution data with life-history trait information provides valuable insight into the processes driving biological invasions and facilitates identification of species most likely to become invasive in the future.


Ecology and Evolution | 2015

Discovery-dominance trade-off among widespread invasive ant species.

Cleo Bertelsmeier; Amaury Avril; Olivier Blight; Herv e Jourdan; Franck Courchamp

Ants are among the most problematic invasive species. They displace numerous native species, alter ecosystem processes, and can have negative impacts on agriculture and human health. In part, their success might stem from a departure from the discovery–dominance trade-off that can promote co-existence in native ant communities, that is, invasive ants are thought to be at the same time behaviorally dominant and faster discoverers of resources, compared to native species. However, it has not yet been tested whether similar asymmetries in behavioral dominance, exploration, and recruitment abilities also exist among invasive species. Here, we establish a dominance hierarchy among four of the most problematic invasive ants (Linepithema humile, Lasius neglectus, Wasmannia auropunctata, Pheidole megacephala) that may be able to arrive and establish in the same areas in the future. To assess behavioral dominance, we used confrontation experiments, testing the aggressiveness in individual and group interactions between all species pairs. In addition, to compare discovery efficiency, we tested the species’ capacity to locate a food resource in a maze, and the capacity to recruit nestmates to exploit a food resource. The four species differed greatly in their capacity to discover resources and to recruit nestmates and to dominate the other species. Our results are consistent with a discovery–dominance trade-off. The species that showed the highest level of interspecific aggressiveness and dominance during dyadic interactions.


Biological Invasions | 2017

Differences in behavioural traits among native and introduced colonies of an invasive ant

Olivier Blight; Roxana Josens; Cleo Bertelsmeier; Sílvia Abril; Raphaël Boulay; Xim Cerdá

Identifying the factors that promote the success of biological invasions is a key pursuit in ecology. To date, the link between animal personality and invasiveness has rarely been studied. Here, we examined in the laboratory how Argentine ant populations from the species’ native and introduced ranges differed in a suite of behaviours related to species interactions and the use of space. We found correlations among specific behavioural traits that defined an explorative-aggressive syndrome. The Main “European” supercolony (introduced range) more readily explored novel environments, displayed more aggression, detected food resources more quickly, and occupied more space than the Catalonian supercolony (introduced range) and two other Argentine supercolonies (native range). The two native supercolonies also differed in their personalities; one harbouring the less invasive personality, while the other is intermediate between the two introduced supercolonies. Therefore, instead of a binary pattern, Argentine ant supercolonies display a behavioural continuum that is independent on their geographic origin (native/introduced ranges). Our results also suggest that variability in personality traits is correlated to differences in the ecological success of Argentine ant colonies. Differences in group personalities may facilitate the persistence and invasion of animals under novel selective pressures by promoting adaptive behaviours. We stress that the concept of animal personality should be taken into account when elucidating the mechanisms of invasiveness.


Ecology and Evolution | 2017

Invasive termites in a changing climate: A global perspective

Grzegorz Buczkowski; Cleo Bertelsmeier

Abstract Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human‐made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the worlds most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species‐rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.

Collaboration


Dive into the Cleo Bertelsmeier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Olivier Blight

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Céline Bellard

University College London

View shared research outputs
Top Co-Authors

Avatar

Gloria M. Luque

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Elsa Bonnaud

Université Paris-Saclay

View shared research outputs
Top Co-Authors

Avatar

Hervé Jourdan

Aix-Marseille University

View shared research outputs
Top Co-Authors

Avatar

Andrew M. Liebhold

United States Forest Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge