Clifford R. Hume
University of Washington
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Clifford R. Hume.
Jaro-journal of The Association for Research in Otolaryngology | 2008
Elizabeth C. Oesterle; Sean Campbell; Ruth R. Taylor; Andrew Forge; Clifford R. Hume
Inner ear hair cells detect environmental signals associated with hearing, balance, and body orientation. In humans and other mammals, significant hair cell loss leads to irreversible hearing and balance deficits, whereas hair cell loss in nonmammalian vertebrates is repaired by the spontaneous generation of replacement hair cells. Research in mammalian hair cell regeneration is hampered by the lack of in vivo damage models for the adult mouse inner ear and the paucity of cell-type-specific markers for non-sensory cells within the sensory receptor epithelia. The present study delineates a protocol to drug damage the adult mouse auditory epithelium (organ of Corti) in situ and uses this protocol to investigate Sox2 and Jagged1 expression in damaged inner ear sensory epithelia. In other tissues, the transcription factor Sox2 and a ligand member of the Notch signaling pathway, Jagged1, are involved in regenerative processes. Both are involved in early inner ear development and are expressed in developing support cells, but little is known about their expressions in the adult. We describe a nonsurgical technique for inducing hair cell damage in adult mouse organ of Corti by a single high-dose injection of the aminoglycoside kanamycin followed by a single injection of the loop diuretic furosemide. This drug combination causes the rapid death of outer hair cells throughout the cochlea. Using immunocytochemical techniques, Sox2 is shown to be expressed specifically in support cells in normal adult mouse inner ear and is not affected by drug damage. Sox2 is absent from auditory hair cells, but is expressed in a subset of vestibular hair cells. Double-labeling experiments with Sox2 and calbindin suggest Sox2-positive hair cells are Type II. Jagged1 is also expressed in support cells in the adult ear and is not affected by drug damage. Sox2 and Jagged1 may be involved in the maintenance of support cells in adult mouse inner ear.
The Journal of Neuroscience | 2011
Vincent Y. W. Lin; Justin S. Golub; Tot Bui Nguyen; Clifford R. Hume; Elizabeth C. Oesterle; Jennifer S. Stone
The capacity of adult mammals to regenerate sensory hair cells is not well defined. To explore early steps in this process, we examined reactivation of a transiently expressed developmental gene, Atoh1, in adult mouse utricles after neomycin-induced hair cell death in culture. Using an adenoviral reporter for Atoh1 enhancer, we found that Atoh1 transcription is activated in some hair cell progenitors (supporting cells) 3 d after neomycin treatment. By 18 d after neomycin, the number of cells with Atoh1 transcriptional activity increased significantly, but few cells acquired hair cell features (i.e., accumulated ATOH1 or myosin VIIa protein or developed stereocilia). Treatment with DAPT, an inhibitor of γ-secretase, reduced notch pathway activity, enhanced Atoh1 transcriptional activity, and dramatically increased the number of Atoh1-expressing cells with hair cell features, but only in the striolar/juxtastriolar region. Similar effects were seen with TAPI-1, an inhibitor of another enzyme required for notch activity (TACE). Division of supporting cells was rare in any control or DAPT-treated utricles. This study shows that mature mammals have a natural capacity to initiate vestibular hair cell regeneration and suggests that regional notch activity is a significant inhibitor of direct transdifferentiation of supporting cells into hair cells following damage.
Molecular Therapy | 2010
Andrew K. Wise; Clifford R. Hume; Brianna O. Flynn; Yogesh S Jeelall; Courtney L Suhr; Beatrice E. Sgro; Stephen O'Leary; Robert K. Shepherd; Rachael T. Richardson
A cochlear implant may be used to electrically stimulate spiral ganglion neurons (SGNs) in people with severe sensorineural hearing loss (SNHL). However, these neurons progressively degenerate after SNHL due to loss of neurotrophins normally supplied by sensory hair cells (HCs). Experimentally, exogenous neurotrophin administration prevents SGN degeneration but can also result in abnormal resprouting of their peripheral fibers. This study aimed to create a target-derived neurotrophin source to increase neuron survival and redirect fiber resprouting following SNHL. Adenoviral (Ad) vectors expressing green fluorescent protein (GFP) alone or in combination with brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT3) were injected into the cochlear scala tympani or scala media of guinea-pigs (GPs) deafened via aminoglycosides for 1 week. After 3 weeks, cochleae were examined for gene expression, neuron survival, and the projection of peripheral fibers in response to gene expression. Injection of vectors into the scala media resulted in more localized gene expression than scala tympani injection with gene expression consistently observed within the partially degenerated organ of Corti. There was also greater neuron survival and evidence of localized fiber responses to neurotrophin-expressing cells within the organ of Corti from scala media injections (P < 0.05), a first step in promoting organized resprouting of auditory peripheral fibers via gene therapy.
Human Immunology | 1989
Clifford R. Hume; Janet S. Lee
Coordinate regulation of HLA class II gene expression during development and coinduction of class II genes by soluble factors suggests that common trans-acting factor(s) control expression of these genes. In B-lymphoblastoid cell lines derived from two independent class II-deficient bare lymphocyte syndrome patients, we observed a drastic decrease in transcription rates of the class II genes. When these cell lines are fused, class II genes are reexpressed, indicating that immunodeficiencies in bare lymphocyte syndrome patients are the result of two distinct mutations. Further studies show that genes governing the expression of class II antigens fall into at least three complementation groups; two of these were previously unidentified in mutant cell lines generated in vitro. In addition, we report the identification of two discrete complexes, NFX1.1 and NFX1.2, that bind to the DRA X consensus element. Though the mutation in at least one mutant line generated in vitro (RJ2.2.5) affects products functioning via interaction with the X box, clear alterations in either NFX1.1 or NFX1.2 are not found in any of the mutant cell lines.
Jaro-journal of The Association for Research in Otolaryngology | 2003
Clifford R. Hume; Mette Kirkegaard; Elizabeth C. Oesterle
In humans, hair cell loss often leads to hearing and balance impairments. Hair cell replacement is vigorous and spontaneous in avians and nonmammalian vertebrates. In mammals, in contrast, it occurs at a very low rate, or not at all, presumably because of a very low level of supporting cell proliferation following injury. Heregulin (HRG), a member of the epidermal growth factor (EGF) family of growth factors, is reported to be a potent mitogen for neonatal rat vestibular sensory epithelium, but its effects in adults are unknown. We report here that HRG-α stimulates cell proliferation in organotypic cultures of neonatal, but not adult, mouse utricular sensory epithelia. Our findings support the idea that the proliferative capabilities of the adult mammalian vestibular sensory epithelia differ significantly from that seen in neonatal animals. Immunohistochemistry reveals that HRG-binding receptors (erbBs 2–4) and erbB1 are widely expressed in vestibular and auditory sensory epithelia in neonatal and adult mouse inner ear. The distribution of erbBs in the neonatal and adult mouse ear is consistent with the EGF receptor/ligand family regulating diverse cellular processes in the inner ear, including cell proliferation and differentiation.
PLOS ONE | 2012
Patrick J. Atkinson; Andrew K. Wise; Brianna O. Flynn; Bryony A. Nayagam; Clifford R. Hume; Stephen O’Leary; Robert K. Shepherd; Rachael T. Richardson
The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to both hold and reverse this degeneration by providing a sustained and localised source of neurotrophins to the deafened cochlea. Adenoviral vectors containing green fluorescent protein, with or without neurotrophin-3 and brain derived neurotrophic factor, were injected into the lower basal turn of scala media of guinea pigs ototoxically deafened one week prior to intervention. This single injection resulted in localised and sustained gene expression, principally in the supporting cells within the organ of Corti. Guinea pigs treated with adenoviral neurotrophin-gene therapy had greater neuronal survival compared to contralateral non-treated cochleae when examined at 7 and 11 weeks post injection. Moreover; there was evidence of directed peripheral fibre regrowth towards cells expressing neurotrophin genes after both treatment periods. These data suggest that neurotrophin-gene therapy can provide sustained protection of spiral ganglion neurons and peripheral fibres after hearing loss.
Journal of Neurocytology | 1999
Elizabeth C. Oesterle; Clifford R. Hume
Growth factors and other extracellular signals regulate cell division in many tissues. Consequently, growth factors may have therapeutic uses to stimulate the production of replacement sensory hair cells in damaged human inner ears, thereby assisting in alleviating hearing loss and vestibular dysfunction. Assessment of the ability of growth factors to stimulate cell proliferation in inner ear sensory epithelia is at an early stage. This paper provides a brief account of what we know regarding growth factor regulation of cell proliferation in developing and mature inner ear sensory epithelia.
Hearing Research | 2012
Rebecca M. Lewis; Clifford R. Hume; Jennifer S. Stone
Loss of hair cells in humans leads to irreversible hearing deficits, since auditory hair cells are not replaced. In contrast, hair cells are regenerated in the auditory epithelium of mature birds after damage by non-sensory supporting cells that transdifferentiate into hair cells by mitotic and/or non-mitotic mechanisms. Factors controlling these processes are poorly understood. The basic helix-loop-helix transcription factor ATOH1 is both necessary and sufficient for developmental hair cell differentiation, but it is unclear if it plays the same role in the mitotic and non-mitotic pathways in hair cell regeneration. We examined Atoh1 expression and function during hair cell regeneration in chickens. Atoh1 transcripts were increased in many supporting cells in the damaged auditory epithelium shortly after ototoxin administration and later became restricted to differentiating hair cells. Fate-mapping in vitro using an Atoh1 enhancer reporter demonstrated that only 56% of the supporting cells that spontaneously upregulate Atoh1 enhancer activity after damage acquired the hair cell fate. Inhibition of notch signaling using a gamma secretase antagonist stimulated an increase in Atoh1 reporter activity and induced a higher proportion of supporting cells with Atoh1 activity (73%) to differentiate as hair cells. Forced overexpression of Atoh1 in supporting cells triggered 66% of them to acquire the hair cell fate and nearly tripled their likelihood of cell cycle entry. These findings demonstrate that Atoh1 is broadly upregulated in supporting cells after damage, but a substantial proportion of supporting cells with Atoh1 activation fails to acquire hair cell features, in part due to gamma secretase-dependent activities.
The Journal of Neuroscience | 2015
Ling Tong; Melissa K. Strong; Tejbeer Kaur; José M. Juiz; Elizabeth C. Oesterle; Clifford R. Hume; Mark E. Warchol; Richard D. Palmiter; Edwin W. Rubel
During nervous system development, critical periods are usually defined as early periods during which manipulations dramatically change neuronal structure or function, whereas the same manipulations in mature animals have little or no effect on the same property. Neurons in the ventral cochlear nucleus (CN) are dependent on excitatory afferent input for survival during a critical period of development. Cochlear removal in young mammals and birds results in rapid death of target neurons in the CN. Cochlear removal in older animals results in little or no neuron death. However, the extent to which hair-cell-specific afferent activity prevents neuronal death in the neonatal brain is unknown. We further explore this phenomenon using a new mouse model that allows temporal control of cochlear hair cell deletion. Hair cells express the human diphtheria toxin (DT) receptor behind the Pou4f3 promoter. Injections of DT resulted in nearly complete loss of organ of Corti hair cells within 1 week of injection regardless of the age of injection. Injection of DT did not influence surrounding supporting cells directly in the sensory epithelium or spiral ganglion neurons (SGNs). Loss of hair cells in neonates resulted in rapid and profound neuronal loss in the ventral CN, but not when hair cells were eliminated at a more mature age. In addition, normal survival of SGNs was dependent on hair cell integrity early in development and less so in mature animals. This defines a previously undocumented critical period for SGN survival.
Chromosoma | 1992
Tiziana Mattioni; Clifford R. Hume; Susanna Konigorski; Paula Hayes; Zvi Osterweil; Janet S. Lee
In an effort to identify trans-acting factors regulating specific genes, we cloned a novel human gene, DBP-5. The cDNA clone contains a predicted open reading frame coding for a potential 1,179 amino acid protein. The mRNA corresponding to DBP-5 is ubiquitously distributed, and the gene is phylogenetically conserved. Immunofluorescence analyses with several cell lines indicate that the protein is localized to the nucleus. Sequence analysis revealed unusual features of the predicted protein structure, including four completely conserved repeats. The phylogenetic conservation of DBP-5, the ubiquity of its expression, its nuclear localization, and its ability to bind DNA sequences, raise the possibility that DBP-5 may play a role in the organization of interphase chromatin and/or in transcriptional regulation.