Jane Dodd
Columbia University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Jane Dodd.
Cell | 1994
Henk Roelink; A. Augsburger; Jill Heemskerk; V. Korzh; S. Norlin; A. Ruiz i Altaba; Yasuto Tanabe; Marysia Placzek; Thomas Edlund; Thomas M. Jessell; Jane Dodd
The differentiation of distinct cell types in the ventral neural tube depends on local inductive signals from the notochord. We have isolated a vertebrate homolog of the Drosophila segment polarity gene hedgehog (hh) from zebrafish and rat, termed vhh-1. vhh-1 is expressed in the node, notochord, floor plate, and posterior limb bud mesenchyme. Each of these cell groups has floor plate inducing activity, suggesting that the vhh-1 gene may encode a floor plate-inducing molecule. Widespread expression of rat vhh-1 in frog embryos leads to ectopic floor plate differentiation in the neural tube. In vitro tests for the signaling functions of vhh-1 demonstrate that COS cells expressing the rat vhh-1 gene induce floor plate and motor neuron differentiation in neural plate explants. vhh-1 may, therefore, contribute to the floor plate and motor neuron inducing activities of the notochord.
Neuron | 1988
Jane Dodd; Susan Morton; D. Karagogeos; M. Yamamoto; Thomas M. Jessell
The identification of surface proteins restricted to subsets of embryonic axons and growth cones may provide information on the mechanisms underlying axon fasciculation and pathway selection in the vertebrate nervous system. We describe here the characterization of a 135 kd cell surface glycoprotein, TAG-1, that is expressed transiently on subsets of embryonic spinal cord axons and growth cones. TAG-1 is immunochemically distinct from the cell adhesion molecules N-CAM and L1 (NILE) and is expressed on commissural and motor neurons over the period of initial axon extension. Moreover, TAG-1 and L1 appear to be segregated on different segments of the same embryonic spinal axons. These observations provide evidence that axonal guidance and pathway selection in vertebrates may be regulated in part by the transient and selective expression of distinct surface glycoproteins on subsets of developing neurons.
Cell | 1991
T. Yamada; Marysia Placzek; H. Tanaka; Jane Dodd; Thomas M. Jessell
Individual classes of neural cells differentiate at distinct locations in the developing vertebrate nervous system. We provide evidence that the pattern of cell differentiation along the dorsoventral axis of the chick neural tube is regulated by signals derived from two ventral midline cell groups, the notochord and floor plate. Grafting an additional notochord or floor plate to ectopic positions, or deleting both cell groups, resulted in changes in the fate and position of neural cell types, defined by expression of specific antigens. These results suggest that the differentiation of neural cells is controlled, in part, by their position with respect to the notochord and floor plate.
Cell | 1990
Andrew J. Furley; Susan Morton; Dominador Manalo; Domna Karagogeos; Jane Dodd; Thomas M. Jessell
Pathfinding of axons in the developing nervous system is thought to be mediated by glycoproteins expressed on the surface of embryonic axons and growth cones. One molecule suggested to play a role in axonal growth is TAG-1, a 135 kd glycoprotein expressed transiently on the surface of subsets of neurons in the developing mammalian nervous system. We isolated a full-length cDNA clone encoding rat TAG-1. TAG-1 has six immunoglobulin-like domains and four fibronectin type III-like repeats and is structurally similar to other immunoglobulin-like proteins expressed on developing axons. Neurons maintained in vitro on a substrate of TAG-1 extend long neurites, suggesting that this protein plays a role in the initial growth and guidance of axons in vivo. TAG-1 is anchored to the neuronal membrane via a glycosyl phosphatidylinositol linkage and is also released from neurons, suggesting that TAG-1 also functions as a substrate adhesion molecule when released into the extracellular environment.
Cell | 1997
J. Kim Dale; Christine Vesque; Thierry J Lints; T.Kuber Sampath; Andrew J. Furley; Jane Dodd; Marysia Placzek
Ventral midline cells at different rostrocaudal levels of the central nervous system exhibit distinct properties but share the ability to pattern the dorsoventral axis of the neural tube. We show here that ventral midline cells acquire distinct identities in response to the different signaling activities of underlying mesoderm. Signals from prechordal mesoderm control the differentiation of rostral diencephalic ventral midline cells, whereas notochord induces floor plate cells caudally. Sonic hedgehog (SHH) is expressed throughout axial mesoderm and is required for the induction of both rostral diencephalic ventral midline cells and floor plate. However, prechordal mesoderm also expresses BMP7 whose function is required coordinately with SHH to induce rostral diencephalic ventral midline cells. BMP7 acts directly on neural cells, modifying their response to SHH so that they differentiate into rostral diencephalic ventral midline cells rather than floor plate cells. Our results suggest a model whereby axial mesoderm both induces the differentiation of overlying neural cells and controls the rostrocaudal character of the ventral midline of the neural tube.
Neuron | 1999
Adela Augsburger; Anita Schuchardt; Sally G. Hoskins; Jane Dodd; Samantha J. Butler
During spinal cord development, commissural (C) neurons, located near the dorsal midline, send axons ventrally and across the floor plate (FP). The trajectory of these axons toward the FP is guided in part by netrins. The mechanisms that guide the early phase of C axon extension, however, have not been resolved. We show that the roof plate (RP) expresses a diffusible activity that repels C axons and orients their growth within the dorsal spinal cord. Bone morphogenetic proteins (BMPs) appear to act as RP-derived chemorepellents that guide the early trajectory of the axons of C neurons in the developing spinal cord: BMP7 mimics the RP repellent activity for C axons in vitro, can act directly to collapse C growth cones, and appears to serve an essential function in RP repulsion of C axons.
Neuron | 2003
Samantha J. Butler; Jane Dodd
During spinal cord development, commissural neurons extend their axons ventrally, away from the roof plate. The roof plate is the source of a diffusible repellent that orients commissural axons in vitro and, thus, may regulate the trajectory of commissural axons in vivo. Of three Bmps expressed in the roof plate, BMP7, but not BMP6 or GDF7, mimics the roof plate activity in vitro. We show here that expression of both Bmp7 and Gdf7 by roof plate cells is required for the fidelity of commissural axon growth in vivo. We also demonstrate that BMP7 and GDF7 heterodimerize in vitro and that, under these conditions, GDF7 enhances the axon-orienting activity of BMP7. Our findings suggest that a GDF7:BMP7 heterodimer functions as a roof plate-derived repellent that establishes the initial ventral trajectory of commissural axons.
Cell | 1995
Jane Dodd; Anita Schuchardt
The guidance of axons to their targets represents a key stage in the assembly of the nervous system, linking the early inductive interactions that establish neuronal identity to the later steps of synapse formation. Neurons are required to extend axons through a variety of cellular environments, and the task of perceiving, integrating, and responding to the myriad signals present in the immediate vicinity of the axon falls to the growth cone, a sensory and motor apparatus located at the distal tip of the developing axon. Attempts to unravel the mechanisms of axonal guidance have centered on four main issues: the cellular strategies used to influence the rate of extension and the orientation of growth cones; the nature of molecules in the local environment of the axon that control growth cone behavior; the identity of receptors on the surface of growth cones that respond to these guidance cues; and the intracellular machinery that integrates multiple extracellular signals to produce the coordinated and directed response of growth cone navigation. The first wave of information on the cellular and molecular mechanisms of growth cone navigation emphasized positive influences on growth cone behavior through the identification of cell, axon, and substrate adhesion molecules that enhance the rate of axon extension and of chemoattractants that entice growth cones to distant targets. It took longer to appreciate that growth cone navigation also depends on negative influences, despite several early cellular assays that showed that contact with a variety of cell types inhibits growth cone motility (Walter et al., 1990; Goodman and Shatz, 1993; Schwab et al., 1993; Keynes and Cook, 1995). The first indications of the nature of proteins that cause growth cone inhibition have emerged over the past 2 years, and several papers in the current issues of Cell and Neuron now advance significantly the case that the guidance of axons, in both vertebrates and invertebrates, is dependent on proteins that inhibit or repel growth cones. These papers focus on two families of proteins, the semaphorinslcollapsins and the netrins. Intriguingly, the netrins have previously been implicated in the attraction of axons, suggesting that distinctions in the nature of guidance cues reside more in the response properties of growth cones than in the identity of environmental signals. Cellular Origins of Growth Cone inhibition In the 198Os, assays of growth cone behavior and axon navigation in vitro began to suggest the existence of signals that guide axons by repelling growth cones (Kapfhammer and Raper, 1987; Walter et al., 1987; Schwab et al., 1993; Keynes and Cooke, 1995). Of critical importance for the identification of relevant molecules was the develMinireview
Neuron | 2008
Sara Wilson; Beth Shafer; Kevin J. Lee; Jane Dodd
Despite increasing evidence for transcriptional control of neural connectivity, how transcription factors regulate discrete steps in axon guidance remains obscure. Projection neurons in the dorsal spinal cord relay sensory signals to higher brain centers. Some projection neurons send their axons ipsilaterally, whereas others, commissural neurons, send axons contralaterally. We show that two closely related LIM homeodomain proteins, Lhx2 and Lhx9, are expressed by a set of commissural relay neurons (dI1c neurons) and are required for the dI1c axon projection. Midline crossing by dI1c axons is lost in Lhx2/9 double mutants, a defect that results from loss of expression of Rig-1 from dI1c axons. Lhx2 binds to a conserved motif in the Rig-1 gene, suggesting that Lhx2/9 regulate directly the expression of Rig-1. Our findings reveal a link between the transcriptional programs that define neuronal subtype identity and the expression of receptors that guide distinctive aspects of their trajectory.
Journal of Neurocytology | 1989
Francisco J. Alvarez; José Rodrigo; Thomas M. Jessell; Jane Dodd; John V. Priestley
SummaryThe light microscopic morphology and distribution of non-substance P-containing small primary afferent fibres were studied. These fibres were labelled using LD2 and LA4 monoclonal antibodies which recognize α-galactose extended oligosaccharides expressed by primary afferent neurons. The LD2 and LA4 antibodies immunostained small primary afferent fibres ending mainly in lamina II of the spinal cord dorsal horn and trigeminal subnucleus caudalis of the rat. The lamination pattern of both types of primary afferents was assessed using an image analysis system. The highest density of LD2-immunoreactive fibres was located in a patchy band located in lamina II outer, while LA4-immunoreactive fibres were distributed mainly through lamina II inner. In lateral regions of cervical and lumbar dorsal horn the LA4-immunoreactive band is broader and comprises almost all lamina II. In contrast to substance P-containing primary afferents, a low density of LD2- or LA4-immunoreactive fibres was found in lamina I, and no terminal fields were found in lamina V or lamina X of the spinal cord or in levels of the trigeminal system outside the subnucleus caudalis. Both antibodies also labelled the parent fibres in the white matter fascicles. LD2-immunoreactive fibres were located in the dorsal roots, medial regions of the Lissauer tract, dorsal columns of the spinal cord, outer regions of the spinal trigeminal tract and dorsal to the cuneatus and gracilis nuclei. In contrast, LA4-immunoreactive fibres were restricted to the dorsal roots, medial and lateral regions of the Lissauer tract and the outer regions of the trigeminal tract. Immunostained fibres in the rootlets of the X and IX nerves and immunoreactive terminal arborizations in various subnuclei of the nucleus tractus solitarius were seen using both antibodies. These results show that subpopulations of small primary afferents stained by LD2 and LA4 antibodies have distinct patterns of central distribution and are consistent with a subdivision of small primary afferents into peptide- and non-peptide-containing groups.