Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clinton K. Matson is active.

Publication


Featured researches published by Clinton K. Matson.


Nature | 2011

DMRT1 prevents female reprogramming in the postnatal mammalian testis

Clinton K. Matson; Mark W. Murphy; Aaron L. Sarver; Michael D. Griswold; Vivian J. Bardwell; David Zarkower

Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/β-catenin signalling. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates and Dmrt1-related sexual regulators are conserved throughout metazoans. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation and testicular cancer.Sex in mammals is determined in the fetal gonad by the presence or absence of the Y chromosome gene Sry, which controls whether bipotential precursor cells differentiate into testicular Sertoli cells or ovarian granulosa cells. This pivotal decision in a single gonadal cell type ultimately controls sexual differentiation throughout the body. Sex determination can be viewed as a battle for primacy in the fetal gonad between a male regulatory gene network in which Sry activates Sox9 and a female network involving WNT/β-catenin signalling. In females the primary sex-determining decision is not final: loss of the FOXL2 transcription factor in adult granulosa cells can reprogram granulosa cells into Sertoli cells. Here we show that sexual fate is also surprisingly labile in the testis: loss of the DMRT1 transcription factor in mouse Sertoli cells, even in adults, activates Foxl2 and reprograms Sertoli cells into granulosa cells. In this environment, theca cells form, oestrogen is produced and germ cells appear feminized. Thus Dmrt1 is essential to maintain mammalian testis determination, and competing regulatory networks maintain gonadal sex long after the fetal choice between male and female. Dmrt1 and Foxl2 are conserved throughout vertebrates and Dmrt1-related sexual regulators are conserved throughout metazoans. Antagonism between Dmrt1 and Foxl2 for control of gonadal sex may therefore extend beyond mammals. Reprogramming due to loss of Dmrt1 also may help explain the aetiology of human syndromes linked to DMRT1, including disorders of sexual differentiation and testicular cancer.


Nature Reviews Genetics | 2012

Sex and the singular DM domain: Insights into sexual regulation, evolution and plasticity

Clinton K. Matson; David Zarkower

Most animals reproduce sexually, but the genetic and molecular mechanisms that determine the eventual sex of each embryo vary remarkably. DM domain genes, which are related to the insect gene doublesex, are integral to sexual development and its evolution in many metazoans. Recent studies of DM domain genes reveal mechanisms by which new sexual dimorphisms have evolved in invertebrates and show that one gene, Dmrt1, was central to multiple evolutionary transitions between sex-determining mechanisms in vertebrates. In addition, Dmrt1 coordinates a surprising array of distinct cell fate decisions in the mammalian gonad and even guards against transdifferentiation of male cells into female cells in the adult testis.


Developmental Cell | 2010

The Mammalian Doublesex Homolog DMRT1 Is a Transcriptional Gatekeeper that Controls the Mitosis versus Meiosis Decision in Male Germ Cells

Clinton K. Matson; Mark W. Murphy; Michael D. Griswold; Shosei Yoshida; Vivian J. Bardwell; David Zarkower

The switch from mitosis to meiosis is a unique feature of germ cell development. In mammals, meiotic initiation requires retinoic acid (RA), which activates meiotic inducers, including Stra8, but how the switch to meiosis is controlled in male germ cells (spermatogonia) remains poorly understood. Here we examine the role of the Doublesex-related transcription factor DMRT1 in adult spermatogenesis using conditional gene targeting in the mouse. Loss of Dmrt1 causes spermatogonia to precociously exit the spermatogonial program and enter meiosis. Therefore, DMRT1 determines whether male germ cells undergo mitosis and spermatogonial differentiation or meiosis. Loss of Dmrt1 in spermatogonia also disrupts cyclical gene expression in Sertoli cells. DMRT1 acts in spermatogonia to restrict RA responsiveness, directly repress Stra8 transcription, and activate transcription of the spermatogonial differentiation factor Sohlh1, thereby preventing meiosis and promoting spermatogonial development. By coordinating spermatogonial development and mitotic amplification with meiosis, DMRT1 allows abundant, continuous production of sperm.


Developmental Cell | 2014

DMRT1 Protects Male Gonadal Cells from Retinoid-Dependent Sexual Transdifferentiation

Anna Minkina; Clinton K. Matson; Robin E. Lindeman; Norbert B. Ghyselinck; Vivian J. Bardwell; David Zarkower

Mammalian sex determination initiates in the fetal gonad with specification of bipotential precursor cells into male Sertoli cells or female granulosa cells. This choice was long presumed to be irreversible, but genetic analysis in the mouse recently revealed that sexual fates must be maintained throughout life. Somatic cells in the testis or ovary, even in adults, can be induced to transdifferentiate to their opposite-sex equivalents by loss of a single transcription factor, DMRT1 in the testis or FOXL2 in the ovary. Here, we investigate what mechanism DMRT1 prevents from triggering transdifferentiation. We find that DMRT1 blocks testicular retinoic acid (RA) signaling from activating genes normally involved in female sex determination and ovarian development and show that inappropriate activation of these genes can drive sexual transdifferentiation. By preventing activation of potential feminizing genes, DMRT1 allows Sertoli cells to participate in RA signaling, which is essential for reproduction, without being sexually reprogrammed.


Yeast | 2003

Parallel analysis of tagged deletion mutants efficiently identifies genes involved in endoplasmic reticulum biogenesis

Robin Wright; Mark L. Parrish; Emily J. Cadera; Lynnelle L. Larson; Clinton K. Matson; Philip W. Garrett-engele; Chris Armour; Pek Yee Lum; Daniel D. Shoemaker

Increased levels of HMG‐CoA reductase induce cell type‐ and isozyme‐specific proliferation of the endoplasmic reticulum. In yeast, the ER proliferations induced by Hmg1p consist of nuclear‐associated stacks of smooth ER membranes known as karmellae. To identify genes required for karmellae assembly, we compared the composition of populations of homozygous diploid S. cerevisiae deletion mutants following 20 generations of growth with and without karmellae. Using an initial population of 1557 deletion mutants, 120 potential mutants were identified as a result of three independent experiments. Each experiment produced a largely non‐overlapping set of potential mutants, suggesting that differences in specific growth conditions could be used to maximize the comprehensiveness of similar parallel analysis screens. Only two genes, UBC7 and YAL011W, were identified in all three experiments. Subsequent analysis of individual mutant strains confirmed that each experiment was identifying valid mutations, based on the mutants sensitivity to elevated HMG‐CoA reductase and inability to assemble normal karmellae. The largest class of HMG‐CoA reductase‐sensitive mutations was a subset of genes that are involved in chromatin structure and transcriptional regulation, suggesting that karmellae assembly requires changes in transcription or that the presence of karmellae may interfere with normal transcriptional regulation. Copyright


Cerebral Cortex | 2013

The Doublesex Homolog Dmrt5 is Required for the Development of the Caudomedial Cerebral Cortex in Mammals

Amandine Saulnier; Marc Keruzore; Sarah De Clercq; Isabelle Bar; Virginie Moers; Dario Magnani; Tessa Walcher; Carol Filippis; Sadia Kricha; Damien Parlier; Laurène Viviani; Clinton K. Matson; Yasushi Nakagawa; Thomas Theil; Magdalena Götz; Antonello Mallamaci; Jean-Christophe Marine; David Zarkower; Eric Bellefroid

Regional patterning of the cerebral cortex is initiated by morphogens secreted by patterning centers that establish graded expression of transcription factors within cortical progenitors. Here, we show that Dmrt5 is expressed in cortical progenitors in a high-caudomedial to low-rostrolateral gradient. In its absence, the cortex is strongly reduced and exhibits severe abnormalities, including agenesis of the hippocampus and choroid plexus and defects in commissural and thalamocortical tracts. Loss of Dmrt5 results in decreased Wnt and Bmp in one of the major telencephalic patterning centers, the dorsomedial telencephalon, and in a reduction of Cajal-Retzius cells. Expression of the dorsal midline signaling center-dependent transcription factors is downregulated, including Emx2, which promotes caudomedial fates, while the rostral determinant Pax6, which is inhibited by midline signals, is upregulated. Consistently, Dmrt5(-/-) brains exhibit patterning defects with a dramatic reduction of the caudomedial cortex. Dmrt5 is increased upon the activation of Wnt signaling and downregulated in Gli3(xt/xt) mutants. We conclude that Dmrt5 is a novel Wnt-dependent transcription factor required for early cortical development and that it may regulate initial cortical patterning by promoting dorsal midline signaling center formation and thereby helping to establish the graded expression of the other transcription regulators of cortical identity.


Eukaryotic Cell | 2006

Endoplasmic Reticulum-Associated Degradation Is Required for Cold Adaptation and Regulation of Sterol Biosynthesis in the Yeast Saccharomyces cerevisiae

Jennifer Loertscher; Lynnelle L. Larson; Clinton K. Matson; Mark L. Parrish; Alicia Felthauser; Aaron Sturm; Christine Tachibana; Martin Bard; Robin Wright

ABSTRACT Endoplasmic reticulum-associated degradation (ERAD) mediates the turnover of short-lived and misfolded proteins in the ER membrane or lumen. In spite of its important role, only subtle growth phenotypes have been associated with defects in ERAD. We have discovered that the ERAD proteins Ubc7 (Qri8), Cue1, and Doa10 (Ssm4) are required for growth of yeast that express high levels of the sterol biosynthetic enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR). Interestingly, the observed growth defect was exacerbated at low temperatures, producing an HMGR-dependent cold sensitivity. Yeast strains lacking UBC7, CUE1, or DOA10 also assembled aberrant karmellae (ordered arrays of membranes surrounding the nucleus that assemble when HMGR is expressed at high levels). However, rather than reflecting the accumulation of abnormal karmellae, the cold sensitivity of these ERAD mutants was due to increased HMGR catalytic activity. Mutations that compromise proteasomal function also resulted in cold-sensitive growth of yeast with elevated HMGR, suggesting that improper degradation of ERAD targets might be responsible for the observed cold-sensitive phenotype. However, the essential ERAD targets were not the yeast HMGR enzymes themselves. The sterol metabolite profile of ubc7Δ cells was altered relative to that of wild-type cells. Since sterol levels are known to regulate membrane fluidity, the viability of ERAD mutants expressing normal levels of HMGR was examined at low temperatures. Cells lacking UBC7, CUE1, or DOA10 were cold sensitive, suggesting that these ERAD proteins have a role in cold adaptation, perhaps through effects on sterol biosynthesis.


Cerebral Cortex | 2016

DMRT5 together with DMRT3 directly controls hippocampus development and neocortical area map formation

Sarah De Clercq; Marc Keruzore; Elodie Desmaris; Charlotte Pollart; Stavroula Assimacopoulos; Julie Preillon; Sabrina Ascenzo; Clinton K. Matson; Melody Lee; Xinsheng Nan; Meng Li; Yasushi Nakagawa; Tino Hochepied; David Zarkower; Elizabeth A. Grove; Eric Bellefroid

Mice that are constitutively null for the zinc finger doublesex and mab-3 related (Dmrt) gene, Dmrt5/Dmrta2, show a variety of patterning abnormalities in the cerebral cortex, including the loss of the cortical hem, a powerful cortical signaling center. In conditional Dmrt5 gain of function and loss of function mouse models, we generated bidirectional changes in the neocortical area map without affecting the hem. Analysis indicated that DMRT5, independent of the hem, directs the rostral-to-caudal pattern of the neocortical area map. Thus, DMRT5 joins a small number of transcription factors shown to control directly area size and position in the neocortex. Dmrt5 deletion after hem formation also reduced hippocampal size and shifted the position of the neocortical/paleocortical boundary. Dmrt3, like Dmrt5, is expressed in a gradient across the cortical primordium. Mice lacking Dmrt3 show cortical patterning defects akin to but milder than those in Dmrt5 mutants, perhaps in part because Dmrt5 expression increases in the absence of Dmrt3. DMRT5 upregulates Dmrt3 expression and negatively regulates its own expression, which may stabilize the level of DMRT5. Together, our findings indicate that finely tuned levels of DMRT5, together with DMRT3, regulate patterning of the cerebral cortex.


Dmrt5 is controlled by negative autoregulation and has autonomous effects on hippocampus development and neocortex arealization | 2016

Dmrt5 is controlled by negative autoregulation and has autonomous effects on hippocampus development and neocortex arealization

Sarah De Clercq; Marc Keruzore; Charlotte Pollart; Stavroula Assimacopoulos; Julie Preillon; Sabrina Ascenzo; Clinton K. Matson; Tino Hochepied; David Zarkower; Elizabeth A. Grove


Nature | 2011

Erratum: DMRT1 prevents female reprogramming in the postnatal mammalian testis (Nature (2011) 476 (101-104))

Clinton K. Matson; Mark W. Murphy; Aaron L. Sarver; Michael D. Griswold; Vivian J. Bardwell; David Zarkower

Collaboration


Dive into the Clinton K. Matson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marc Keruzore

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar

Sarah De Clercq

Université libre de Bruxelles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge