Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Clive Roderick Harding is active.

Publication


Featured researches published by Clive Roderick Harding.


Developmental Biology | 1986

Filaggrin breakdown to water binding compounds during development of the rat stratum corneum is controlled by the water activity of the environment

Ian Richard Scott; Clive Roderick Harding

Filaggrin is a specific epidermal protein which is the precursor of the free amino acids, urocanic acid and pyrrolidone carboxylic acid which are largely responsible for the ability of the stratum corneum of the skin to remain hydrated at low environmental humidity. The distribution of filaggrin shown by immunofluorescence in the stratum corneum of the rat changed dramatically during the first hours of postnatal life. During late foetal development, filaggrin accumulated through the entire thickness of the stratum corneum, indicating that there was a block on the subsequent processing of the protein which normally would convert it to free amino acids. Immediately after birth this block was lifted and normal proteolysis of the filaggrin took place in the outer part of the stratum corneum, leaving the normal adult pattern of a thin zone of cells containing filaggrin at the bottom of the stratum corneum. This activation of filaggrin proteolysis was dependent on the drop in external water activity caused by the transition from an aqueous environment in utero to a dryer environment after birth and it could be blocked by maintaining a 100% humidity atmosphere around the newborn rat after birth. In isolated stratum corneum in vitro, filaggrin proteolysis took place only between 80 and 95% relative humidity, both higher and lower relative humidity blocked the proteolysis. Application of occlusive patches to adult rats prevented the normal proteolysis of filaggrin, indicating that this mechanism controls not only the massive filaggrin proteolysis occurring after birth but also the proteolysis occurring during normal stratum corneum maturation. The stratum corneum therefore has the ability to respond to changes in external humidity by altering the level of the stratum corneum where it converts its reserves of filaggrin into water binding amino acids, such that under humid conditions water binding components will be produced in only the most superficial stratum corneum, or even not produced at all.


Archives of Dermatological Research | 1996

Stratum corneum lipids: the effect of ageing and the seasons

J. Rogers; Clive Roderick Harding; A. Mayo; J. Banks; Anthony Vincent Rawlings

Stratum corneum lipids play a predominant role in maintaining the water barrier of the skin. In order to understand the biological variation in the levels and composition of ceramides, ceramide 1 subtypes, cholesterol and fatty acids, stratum corneum lipids collected from tape strippings from three body sites (face, hand, leg) of female Caucasians of different age groups were analysed. In addition, we studied the influence of seasonal variation on the lipid composition of stratum corneum from the same body sites. The main lipid species were quantified using high-performance thin-layer chromatography and individual fatty acids using gas chromatography. Our findings demonstrated significantly decreased levels of all major lipid species, in particular ceramides, with increasing age. Similarly, the stratum corneum lipid levels of all the body sites examined were dramatically depleted in winter compared with spring and summer. The relative levels of ceramide 1 linoleate were also depleted in winter and in aged skin whereas ceramide 1 oleate levels increased. The other fatty acid levels remained fairly constant with both season and age, apart from lignoceric and heptadecanoic acid which showed a decrease in winter compared with summer. The decrease in the mass levels of intercellular lipids and the altered ratios of fatty acids esterified to ceramide 1, are likely to contribute to the increased susceptibility of aged skin to perturbation of barrier function and xerosis, particularly during the winter months.


Biochimica et Biophysica Acta | 1982

Histidine-rich protein of the keratohyalin granules. Source of the free amino acids, urocanic acid and pyrrolidone carboxylic acid in the stratum corneum.

Ian Richard Scott; Clive Roderick Harding; John Barrett

The pool of free amino acids, urocanic acid and pyrrolidone carboxylic acid in mammalian stratum corneum has been shown to be derived principally or totally from the histidine-rich protein of the keratohyalin granules. The time course of appearance of free amino acids and breakdown of the histidine-rich protein are similar, as are the analyses of the free amino acids and the histidine-rich protein. Quantitative studies show that between 70 and 100% of the total stratum corneum-free amino acids are derived from the histidine-rich protein.


Journal of Molecular Biology | 1983

Histidine-rich proteins (filaggrins): Structural and functional heterogeneity during epidermal differentiation

Clive Roderick Harding; Ian Richard Scott

The urea-soluble protein profiles of guinea pig, rat, mouse and human epidermis have been compared by non-equilibrium pH gradient/sodium dodecyl sulphate two-dimensional gel electrophoresis. The histidine-rich proteins (filaggrins) were identified firstly by their characteristic specificity and kinetics of labelling with [3H]histidine and [32P]phosphate, and secondly by their ability in vitro to aggregate keratin filaments specifically into bundles. In all species the phosphorylated filaggrin precursor, profilaggrin, is resolved as a single or doublet band with an apparent molecular weight greater than 300,000 and a neutral or slightly acidic iso-electric point. In striking contrast, the strongly basic filaggrins produced from similar profilaggrins form molecular weight families that are clearly species specific. In rat and man there is a single, principal molecular weight form of filaggrin (Mr 45,000 and 38,000, respectively), while mouse and guinea pig have heterogeneous families, including high molecular weight variants (Mr greater than 200,000). Even filaggrins of a particular molecular weight are not homogeneous proteins, but consist of a number of iso-electric variants, some of which are considerably less basic than the bulk of the filaggrins. Incorporation studies using [3H]arginine and [32P]phosphate indicate that the iso-electric variance is not due to residual phosphate, following profilaggrin breakdown, but rather to a conversion of basic arginine residues into neutral citrulline residues. Filaggrins of all the molecular weights from all the species studied share the ability to aggregate keratin filaments into large, insoluble macrofibrils. However, the more acidic iso-electric variants have lower affinities for keratin, particularly in man and guinea pig where the most acidic filaggrins have completely lost the ability to aggregate keratins. We discuss the possibility that a loss of keratin binding ability, resulting in a loosening of the keratin fibre/filaggrin matrix is necessary before the normal complete proteolysis of the filaggrins can occur.


Biochimica et Biophysica Acta | 1981

Studies on the synthesis and degradation of a high molecular weight, histidine-rich phosphoprotein from mammalian epidermis.

Ian Richard Scott; Clive Roderick Harding

The synthesis and subsequent fate of the histidine-rich proteins, which form a major component of keratohyalin granules in mammalian epidermis, have been studied in the guinea-pig and new-born rat. In both species the protein first synthesised is of very high molecular weight, approximately 340 000. It is short-lived and breaks down to lower molecular weight proteins 1-2 days after its synthesis. These smaller proteins differ in the two species. In the guinea-pig, the high molecular weight protein breaks down to proteins of molecular weight 250 000 and 200 000, which are themselves unstable and break down to low molecular weight species, probably amino acids. The initial breakdown of the high molecular weight protein coincides with the dispersion of the keratohyalin granules and the transition of the granular cell into the stratum corneum. This high molecular weight histidine-rich protein has been purified to homogeneity, despite its instability to several treatments during purification. The protein is highly phosphorylated, containing 6 mol% of phosphoserine, but is otherwise very basic. The possibility that dephosphorylation of the protein produces highly basic matrix proteins in the stratum corneum is discussed.


Archives of Dermatological Research | 2001

Water modulation of stratum corneum chymotryptic enzyme activity and desquamation

Allan Watkinson; Clive Roderick Harding; Alison Moore; Philip Coan

Abstract Exposure to a dry environment leads to depletion of water from the peripheral stratum corneum layers in a process dependent on the relative humidity (RH) and the intrinsic properties of the tissue. We hypothesized that by modulating the water content of the stratum corneum in the surface layers, RH effects the rate of desquamation by modulating the activity of the desquamatory enzymes, and specifically stratum corneum chymotryptic enzyme (SCCE). Using a novel air interface in vitro desquamatory model, we demonstrated RH-dependent corneocyte release with desquamatory rates decreasing below 80% RH. Application of 10% glycerol or a glycerol-containing moisturizing lotion further increased desquamation, even in humid conditions, demonstrating that water was the rate-limiting factor in the final stages of desquamation. Furthermore, even in humid conditions desquamation was sub-maximal. In situ stratum corneum SCCE activity showed a dependence on RH: activity was significantly higher at 100% than at 44% RH. Further increases in SCCE activity were induced by applying a 10% glycerol solution. Since SCCE, a water-requiring enzyme, must function in the water-depleted outer stratum corneum, we sought to determine whether this enzyme has a tolerance to lowered water activity. Using concentrated sucrose solutions to lower water activity, we analysed the activity of recombinant SCCE and compared it to that of trypsin and chymotrypsin. SCCE activity demonstrated a tolerance to water restriction, and this may be an adaptation to maintain enzyme activity even within the water-depleted stratum corneum intercellular space. Overall these findings support the concept that in the upper stratum corneum, RH modulates desquamation by its effect upon SCCE activity, and possibly other desquamatory hydrolases. In addition, SCCE may be adapted to function in the water-restricted stratum corneum intercellular space.


Archives of Dermatological Research | 2005

Filaggrin repeat number polymorphism is associated with a dry skin phenotype

Rebecca Susan Unilever R D Colworth Ginger; Sarah Louise Unilever R D Colworth Blachford; Julie Rowland; Matthew Rowson; Clive Roderick Harding

Profilaggrin is a key epidermal protein, critical for the generation and maintenance of the stratum corneum barrier. It is encoded by a gene located in the epidermal differentiation complex of Chromosome 1q21 and is composed of multiple filaggrin repeats connected by highly conserved linker peptides. Within the human population the number of filaggrin repeats encoded by this gene varies between 10, 11 or 12 repeats. Using a PCR-based approach we have determined individual profilaggrin allelotypes in a group of 113 subjects and identified preliminary evidence of an inverse association between the 12 repeat allele and self-perceived frequent dry skin (P=0.0293). This is the first demonstration of a potential association between a genetic marker and cosmetic skin condition and suggests that cosmetic skin dryness may in part be genetically determined and associated with specific profilaggrin allelotypes.


Journal of Investigative Dermatology | 2012

Regulatory Role for the Profilaggrin N-Terminal Domain in Epidermal Homeostasis

Sirpa Aho; Clive Roderick Harding; Jianming Lee; Helen Meldrum; Carol Bosko

It is well known that profilaggrin, after its release from keratohyalin granules through dephosphorylation, becomes enzymatically processed into individual filaggrin monomers. The roles for filaggrin monomers in aggregating keratin filaments, as a component of the cornified cell envelope, and as a source of natural moisturizing factor are well established. A specific N-terminal fragment, called the PF-AB domain, becomes proteolytically released as well, but much less is known about its functional role in epidermal development. Here, the functional role of profilaggrin N-terminal (PF-N) domain was addressed by overexpressing three overlapping fragments from a lentiviral expression vector in the epidermis of living skin equivalents. The PF-N domain expression impaired the epidermal development through reducing keratinocyte proliferation and impairing differentiation. The expression of well-known differentiation markers profilaggrin, loricrin, and keratin 10 was considerably downregulated in PF-N domain overexpressing-skin equivalents. The activation of caspase 14 was also substantially affected. In contrast, total silencing of profilaggrin expression, obtained with a lentiviral miR vector, resulted in a hyperproliferative epidermis. We propose a hypothesis that profilaggrin AB domain provides a key feedback mechanism that controls epidermal homeostasis.


Analytical Biochemistry | 1983

Fluorography—limitations on its use for the quantitative detection of 3H- and 14C-labeled proteins in polyacrylamide gels

Clive Roderick Harding; Ian Richard Scott

The suitability of fluorography for the detection of 3H- and 14C-labeled proteins on polyacrylamide gradient gels has been investigated. It was found that the absorbance of the fluorographic film image produced by a given level of radioactivity decreased as the acrylamide concentration in the gel increased. The use of Coomassie brilliant blue protein dyes to stain the gel prior to fluorography reduced the absorbance of the fluorographic image. It is concluded that quantitative fluorography can only be applied to unstained gels of a uniform acrylamide concentration.


Annals of the New York Academy of Sciences | 1988

Does Catabolism of Stratum Corneum Proteins Yield Functionally Active Molecules

Ian Richard Scott; Susan Richards; Clive Roderick Harding; J. Eryl Liddell; C. Gerald Curt

The title of this paper is a rather broad and cryptic question, so let us start by decoding and answering it. There are many stratum corneum proteins that are presumably degraded as the stratum corneum matures but one protein dominates all others on a quantitative basis. Filaggrin may comprise more than one quarter of the total protein complement of the newly formed stratum corneum cell but by the time that cell is 3-4 days old, virtually no filaggrin remains and instead the cell contains an enormously concentrated “soup” of amino acids and derivatives thereof.Ig These are the catabolised molecules-are they “functionally active?”

Researchain Logo
Decentralizing Knowledge