Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colden V. Baxter is active.

Publication


Featured researches published by Colden V. Baxter.


BioScience | 2002

Landscapes to riverscapes: bridging the gap between research and conservation of stream fishes

Kurt D. Fausch; Christian E. Torgersen; Colden V. Baxter; Hiram W. Li

R and streams, by their very nature long ribbons of aquatic habitat, are inherently difficult to study. Approaching the banks of a flowing-water (lotic) system, one can see only a short fragment of the entire stream, from one bend to another, and can gain little appreciation for important features that lie beyond view. Moreover, materials transported downstream by the flow, and organisms traveling up or down the hydraulic highway, are soon gone from the reach and the opportunity to study them is often lost. Lakes present their own challenges for study, but by contrast to streams, one can usually see large expanses from shore that encompass all major habitats needed for aquatic organisms to complete their life history, such as gravel shoals, beds of aquatic vegetation, and open water habitats. Much of our knowledge of the ecology of rivers and streams is based on observations and experiments on organisms and habitat in the short fragments we can view or quickly traverse on foot, and this limited understanding underpins our efforts at conservation of stream fishes. Here, we argue that this understanding is incomplete, like viewing only disjunct parts of a landscape painting through small holes in a curtain draping it. We propose that a continuous view of rivers is essential for effective research and conservation of their fishes and other aquatic biota—a view not just of disjunct reaches but of the entire spatially heterogeneous scene of the river environment, the riverscape, unfolding through time. One symptom of our incomplete understanding is the alarming rate of decline over the last 50 years of fishes that inhabit rivers and streams of North America. The public is aware that salmon are disappearing from the Pacific Northwest, with about a quarter of the 214 stocks of anadromous salmon and trout imperiled a decade ago (Nehlsen et al. 1991). Even little-known small fishes native to Great Plains and southwestern desert streams have suffered drastic declines (Minckley and Douglas 1991, Fausch and Bestgen 1997), and many are now either protected by federal or state listing as endangered or threatened species or are being considered for such protection. North America harbored the greatest diversity worldwide of temperate freshwater fishes (Warren and Burr 1994), crayfishes (Taylor et al. 1996), and mussels (Williams et al. 1993), but about 30% to 75% of the taxa in each group are at increased risk of extinction (i.e., categorized as rare, threatened, or endangered species). Fishes are also the most imperiled vertebrates worldwide (Allan and Flecker 1993, Leidy and Moyle 1998) and a large proportion spend at least part of their lives in streams.


Ecology | 2004

FISH INVASION RESTRUCTURES STREAM AND FOREST FOOD WEBS BY INTERRUPTING RECIPROCAL PREY SUBSIDIES

Colden V. Baxter; Kurt D. Fausch; Masashi Murakami; Phillip L. Chapman

Habitat alteration and biotic invasions are the two leading causes of global environmental change and biodiversity loss. Recent innovative experiments have shown that habitat disturbance can have drastic effects that cascade to adjacent ecosystems by altering the flow of resource subsidies from donor systems. Likewise, exotic species in- vasions could alter subsidies and affect distant food webs, but very few studies have tested this experimentally. Here we report evidence from a large-scale field experiment in northern Japan that invasion of nonnative rainbow trout (Oncorhynchus mykiss) interrupted reciprocal flows of invertebrate prey that drove stream and adjacent riparian forest food webs. Rainbow trout usurped terrestrial prey that fell into the stream, causing native Dolly Varden charr (Salvelinus malma) to shift their foraging to insects that graze algae from the stream bottom. This indirectly increased algal biomass, but also decreased biomass of adult aquatic insects emerging from the stream to the forest. In turn, this led to a 65% reduction in the density of riparian-specialist spiders in the forest. Thus, species invasions can interrupt flows of resources between interconnected ecosystems and have effects that propagate across their boundaries, effects that may be difficult to anticipate without in-depth understanding of food web relationships.


Ecology | 2011

Quantity and quality: unifying food web and ecosystem perspectives on the role of resource subsidies in freshwaters

Amy Marcarelli; Colden V. Baxter; Madeleine M. Mineau; Robert O. Hall

Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.


Fisheries | 2010

Linking Ecosystems, Food Webs, and Fish Production: Subsidies in Salmonid Watersheds

Mark S. Wipfli; Colden V. Baxter

Physical characteristics of riverine habitats, such as large wood abundance, pool geometry and abundance, riparian vegetation cover, and surface flow conditions, have traditionally been thought to constrain fish production in these ecosystems. Conversely, the role of food resources (quantity and quality) in controlling fish production has received far less attention and consideration, though they can also be key productivity drivers. Traditional freshwater food web illustrations have typically conveyed the notion that most fish food is produced within the local aquatic habitat itself, but the concepts and model we synthesize in this article show that most fish food comes from external or very distant sources—including subsidies from marine systems borne from adult returns of anadromous fishes, from fishless headwater tributaries that transport prey to downstream fish, and from adjacent streamside vegetation and associated habitats. The model we propose further illustrates how key trophic pathways and food...


Ecological Applications | 2011

Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

Wyatt F. Cross; Colden V. Baxter; Kevin C. Donner; Emma J. Rosi-Marshall; Theodore A. Kennedy; Robert O. Hall; Holly A. Wellard Kelly; R. Scott Rogers

Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, U.S.A., in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer-resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.


Ecological Monographs | 2013

Food‐web dynamics in a large river discontinuum

Wyatt F. Cross; Colden V. Baxter; Emma J. Rosi-Marshall; Robert O. Hall; Theodore A. Kennedy; Kevin C. Donner; Holly A. Wellard Kelly; Sarah Ellen Zahn Seegert; Kathrine E. Behn; Michael D. Yard

Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of pertu...


Oecologia | 2007

Invading rainbow trout usurp a terrestrial prey subsidy from native charr and reduce their growth and abundance

Colden V. Baxter; Kurt D. Fausch; Masashi Murakami; Phillip L. Chapman

Movements of prey organisms across ecosystem boundaries often subsidize consumer populations in adjacent habitats. Human disturbances such as habitat degradation or non-native species invasions may alter the characteristics or fate of these prey subsidies, but few studies have measured the direct effects of this disruption on the growth and local abundance of predators in recipient habitats. Here we present evidence, obtained from a combined experimental and comparative study in northern Japan, that an invading stream fish usurped the flux of allochthonous prey to a native fish, consequently altering the diet and reducing the growth and abundance of the native species. A large-scale field experiment showed that excluding terrestrial invertebrates that fell into the stream with a mesh greenhouse reduced terrestrial prey in diets of native Dolly Varden charr (Salvelinus malma) by 46–70%, and reduced their growth by 25% over six weeks. However, when nonnative rainbow trout (Oncorhynchus mykiss) were introduced, they monopolized these prey and caused an even greater reduction of terrestrial prey in charr diets of 82–93%, and reduced charr growth by 31% over the same period. Adding both greenhouse and rainbow trout treatments together produced similar results to adding either alone. Results from a comparative field study of six other stream sites in the region corroborated the experimental findings, showing that at invaded sites rainbow trout usurped the terrestrial prey subsidy, causing a more than 75% decrease in the biomass of terrestrial invertebrates in Dolly Varden diets and forcing them to shift their foraging to insects on the stream bottom. Moreover, at sites with even low densities of rainbow trout, biomass of Dolly Varden was more than 75% lower than at sites without rainbow trout. Disruption of resource fluxes between habitats may be a common, but unidentified, consequence of invasions, and an additional mechanism contributing to the loss of native species


Transactions of The American Fisheries Society | 1999

Geomorphology, Logging Roads, and the Distribution of Bull Trout Spawning in a Forested River Basin: Implications for Management and Conservation

Colden V. Baxter; Christopher A. Frissell; F. Richard Hauer

Abstract The Swan Basin in Montana is considered a stronghold of regional significance for the bull trout Salvelinus confluentus, a native char whose populations are fragmented and declining throughout its range. We used correlation analysis to examine spatial and temporal variation of bull trout redd count data (1982–1995) relative to geomorphic and land-use factors among nine principal spawning tributaries of the Swan River. Bull trout redd numbers were positively correlated with the extent of alluvial valley segments bounded by knickpoints and negatively correlated with the density of logging roads in spawning tributary catchments. The density of logging roads in spawning tributary catchments was not significantly correlated with geomorphic factors. Temporal trends among the principal spawning streams were variable. In four of the nine principal spawning streams, redd numbers increased significantly during the survey period, and in the remaining streams, redd numbers showed no significant change. Chang...


Fisheries | 2008

Evolution, Ecology, and Conservation of Dolly Varden, White spotted Char, and Bull Trout

Jason B. Dunham; Colden V. Baxter; Kurt D. Fausch; Wade Fredenberg; Satoshi Kitano; Itsuro Koizumi; Kentaro Morita; Tomoyuki Nakamura; Bruce E. Rieman; Ksenia Savvaitova; Jack A. Stanford; Eric B. Taylor; Shoichiro Yamamoto

Abstract We review the ecology and conservation of three lesser-known chars (genus Salvelinus): Dolly Varden (S. malma), white-spotted char (S. leucomaenis), and bull trout (S. confluentus). Dolly Varden is distributed across the northern Pacific Rim and co-occurs with bull trout and white-spotted char at the southern extremes of its range. In contrast, bull trout and white-spotted char are naturally isolated, with the former restricted to North America and the latter distributed in northeastern Asia. Though the range of Dolly Varden overlaps with the two other chars, it is most closely related to Arctic char (S. alpinus), whereas bull trout and white-spotted char are sister taxa. Each species exhibits diverse life histories with respect to demographic characteristics, trophic ecology, and movement. This diversity appears to be tied to environmental variability (e.g., temperature, habitat connectivity), resource availability (e.g., food), and species interactions. Increasingly, these interactions involve ...


Transactions of The American Fisheries Society | 2011

Trout Piscivory in the Colorado River, Grand Canyon: Effects of Turbidity, Temperature, and Fish Prey Availability

Michael D. Yard; Lewis G. Coggins; Colden V. Baxter; Glenn E. Bennett; Josh Korman

Abstract Introductions of nonnative salmonids, such as rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta, have affected native fishes worldwide in unforeseen and undesirable ways. Predation and other interactions with nonnative rainbow trout and brown trout have been hypothesized as contributing to the decline of native fishes (including the endangered humpback chub Gila cypha) in the Colorado River, Grand Canyon. A multiyear study was conducted to remove nonnative fish from a 15-km segment of the Colorado River near the Little Colorado River confluence. We evaluated how sediment, temperature, fish prey availability, and predator abundance influenced the incidence of piscivory (IP) by nonnative salmonids. Study objectives were addressed through spatial (upstream and downstream of the Little Colorado River confluence) and temporal (seasonal and annual) comparisons of prey availability and predator abundance. Data were then evaluated by modeling the quantity of fish prey ingested by trout durin...

Collaboration


Dive into the Colden V. Baxter's collaboration.

Top Co-Authors

Avatar

Amy Marcarelli

Michigan Technological University

View shared research outputs
Top Co-Authors

Avatar

Mark S. Wipfli

University of Alaska Fairbanks

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kurt D. Fausch

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Theodore A. Kennedy

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Wyatt F. Cross

Montana State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge