Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Wyatt F. Cross is active.

Publication


Featured researches published by Wyatt F. Cross.


Ecology | 2006

WHOLE-SYSTEM NUTRIENT ENRICHMENT INCREASES SECONDARY PRODUCTION IN A DETRITUS-BASED ECOSYSTEM

Wyatt F. Cross; J. B. Wallace; Amy D. Rosemond; Susan L. Eggert

Although the effects of nutrient enrichment on consumer-resource dynamics are relatively well studied in ecosystems based on living plants, little is known about the manner in which enrichment influences the dynamics and productivity of consumers and resources in detritus-based ecosystems. Because nutrients can stimulate loss of carbon at the base of detrital food webs, effects on higher consumers may be fundamentally different than what is expected for living-plant-based food webs in which nutrients typically increase basal carbon. We experimentally enriched a detritus-based headwater stream for two years to examine the effects of nutrient-induced changes at the base of the food web on higher metazoan (predominantly invertebrate) consumers. Our paired-catchment design was aimed at quantifying organic matter and invertebrate dynamics in the enriched stream and an adjacent reference stream for two years prior to enrichment and two years during enrichment. Enrichment had a strong negative effect on standing crop of leaf litter, but no apparent effect on that of fine benthic organic matter. Despite large nutrient-induced reductions in the quantity of leaf litter, invertebrate secondary production during the enrichment was the highest ever reported for headwater streams at this Long Term Ecological Research site and was 1.2-3.3 times higher than predicted based on 15 years of data from these streams. Abundance, biomass, and secondary production of invertebrate consumers increased significantly in response to enrichment, and the response was greater among taxa with larval life spans < or = 1 yr than among those with larval life spans >1 yr. Production of invertebrate predators closely tracked the increased production of their prey. The response of invertebrates was largely habitat-specific with little effect of enrichment on food webs inhabiting bedrock outcrops. Our results demonstrate that positive nutrient-induced changes to food quality likely override negative changes to food quantity for consumers during the initial years of enrichment of detritus-based stream ecosystems. Longer-term enrichment may impact consumers through eventual reductions in the quantity of detritus.


Advances in Ecological Research | 2010

Ecological Networks in a Changing Climate

Guy Woodward; Jonathan P. Benstead; Oliver S. Beveridge; Julia L. Blanchard; Thomas Brey; Lee E. Brown; Wyatt F. Cross; Nikolai Friberg; Thomas C. Ings; Ute Jacob; Simon Jennings; Mark E. Ledger; Alexander M. Milner; José M. Montoya; Eoin J. O'Gorman; Jens M. Olesen; Owen L. Petchey; Doris E. Pichler; Daniel C. Reuman; Murray S. A. Thompson; F. J. Frank van Veen; Gabriel Yvon-Durocher

Summary Attempts to gauge the biological impacts of climate change have typically focussed on the lower levels of organization (individuals to populations), rather than considering more complex multi-species systems, such as entire ecological networks (food webs, mutualistic and host–parasitoid networks). We evaluate the possibility that a few principal drivers underpin network-level responses to climate change, and that these drivers can be studied to develop a more coherent theoretical framework than is currently provided by phenomenological approaches. For instance, warming will elevate individual ectotherm metabolic rates, and direct and indirect effects of changes in atmospheric conditions are expected to alter the stoichiometry of interactions between primary consumers and basal resources; these effects are general and pervasive, and will permeate through the entire networks that they affect. In addition, changes in the density and viscosity of aqueous media could alter interactions among very small organisms and disrupt the pycnoclines that currently compartmentalize many aquatic networks in time and space. We identify a range of approaches and potential model systems that are particularly well suited to network-level studies within the context of climate change. We also highlight potentially fruitful areas of research with a view to improving our predictive power regarding climate change impacts on networks. We focus throughout on mechanistic approaches rooted in first principles that demonstrate potential for application across a wide range of taxa and systems.


Ecological Applications | 2011

Ecosystem ecology meets adaptive management: food web response to a controlled flood on the Colorado River, Glen Canyon

Wyatt F. Cross; Colden V. Baxter; Kevin C. Donner; Emma J. Rosi-Marshall; Theodore A. Kennedy; Robert O. Hall; Holly A. Wellard Kelly; R. Scott Rogers

Large dams have been constructed on rivers to meet human demands for water, electricity, navigation, and recreation. As a consequence, flow and temperature regimes have been altered, strongly affecting river food webs and ecosystem processes. Experimental high-flow dam releases, i.e., controlled floods, have been implemented on the Colorado River, U.S.A., in an effort to reestablish pulsed flood events, redistribute sediments, improve conditions for native fishes, and increase understanding of how dam operations affect physical and biological processes. We quantified secondary production and organic matter flows in the food web below Glen Canyon dam for two years prior and one year after an experimental controlled flood in March 2008. Invertebrate biomass and secondary production declined significantly following the flood (total biomass, 55% decline; total production, 56% decline), with most of the decline driven by reductions in two nonnative invertebrate taxa, Potamopyrgus antipodarum and Gammarus lacustris. Diatoms dominated the trophic basis of invertebrate production before and after the controlled flood, and the largest organic matter flows were from diatoms to the three most productive invertebrate taxa (P. antipodarum, G. lacustris, and Tubificida). In contrast to invertebrates, production of rainbow trout (Oncorhynchus mykiss) increased substantially (194%) following the flood, despite the large decline in total secondary production of the invertebrate assemblage. This counterintuitive result is reconciled by a post-flood increase in production and drift concentrations of select invertebrate prey (i.e., Chironomidae and Simuliidae) that supported a large proportion of trout production but had relatively low secondary production. In addition, interaction strengths, measured as species impact values, were strongest between rainbow trout and these two taxa before and after the flood, demonstrating that the dominant consumer-resource interactions were not necessarily congruent with the dominant organic matter flows. Our study illustrates the value of detailed food web analysis for elucidating pathways by which dam management may alter production and strengths of species interactions in river food webs. We suggest that controlled floods may increase production of nonnative rainbow trout, and this information can be used to help guide future dam management decisions.


Ecology | 2007

NUTRIENT ENRICHMENT REDUCES CONSTRAINTS ON MATERIAL FLOWS IN A DETRITUS-BASED FOOD WEB

Wyatt F. Cross; J. Bruce Wallace; Amy D. Rosemond

Most aquatic and terrestrial ecosystems are experiencing increased nutrient availability, which is affecting their structure and function. By altering community composition and productivity of consumers, enrichment can indirectly cause changes in the pathways and magnitude of material flows in food webs. These changes, in turn, have major consequences for material storage and cycling in the ecosystem. Understanding mechanisms and predicting consequences of nutrient-induced changes in material flows requires a quantitative food web approach that combines information on consumer energetics and consumer-resource stoichiometry. We examined effects of a whole-system experimental nutrient enrichment on the trophic basis of production and the magnitude and pathways of carbon (C), nitrogen (N), and phosphorus (P) flows in a detritus-based stream food web. We compared the response of the treated stream to an adjacent reference stream throughout the study. Dietary composition and elemental flows varied considerably among invertebrate functional feeding groups. During nutrient enrichment, increased flows of leaf litter and amorphous detritus to shredders and gatherers accounted for most of the altered flows of C from basal resources to consumers. Nutrient enrichment had little effect on patterns of material flows but had large positive effects on the magnitude of C, N, and P flows to consumers (mean increase of 97% for all elements). Nutrient-specific food webs revealed similar flows of N and P to multiple functional groups despite an order of magnitude difference among groups in consumption of C. Secondary production was more strongly related to consumption of nutrients than C, and increased material flows were positively related to the degree of consumer-resource C:P and C:N imbalances. Nutrient enrichment resulted in an increased proportion of detrital C inputs consumed by primary consumers (from -15% to 35%) and a decreased proportion of invertebrate prey consumed by predators (from -80% to 55%). Our results demonstrate that nutrient enrichment of detritus-based systems may reduce stoichiometric constraints on material flows, increase the contribution of consumers to C, N, and P cycling, alter the proportion of C inputs metabolized by consumers, and potentially lead to reduced ecosystem-level storage of C.


Ecological Monographs | 2013

Food‐web dynamics in a large river discontinuum

Wyatt F. Cross; Colden V. Baxter; Emma J. Rosi-Marshall; Robert O. Hall; Theodore A. Kennedy; Kevin C. Donner; Holly A. Wellard Kelly; Sarah Ellen Zahn Seegert; Kathrine E. Behn; Michael D. Yard

Nearly all ecosystems have been altered by human activities, and most communities are now composed of interacting species that have not co-evolved. These changes may modify species interactions, energy and material flows, and food-web stability. Although structural changes to ecosystems have been widely reported, few studies have linked such changes to dynamic food-web attributes and patterns of energy flow. Moreover, there have been few tests of food-web stability theory in highly disturbed and intensely managed freshwater ecosystems. Such synthetic approaches are needed for predicting the future trajectory of ecosystems, including how they may respond to natural or anthropogenic perturbations. We constructed flow food webs at six locations along a 386-km segment of the Colorado River in Grand Canyon (Arizona, USA) for three years. We characterized food-web structure and production, trophic basis of production, energy efficiencies, and interaction-strength distributions across a spatial gradient of pertu...


Advances in Ecological Research | 2012

Impacts of Warming on the Structure and Functioning of Aquatic Communities : Individual-to Ecosystem-Level Responses

Eoin J. O'Gorman; Doris E. Pichler; Georgina Adams; Jonathan P. Benstead; Haley Cohen; Nicola Craig; Wyatt F. Cross; Benoît O. L. Demars; Nikolai Friberg; Gísli Már Gíslason; Rakel Gudmundsdottir; Adrianna Hawczak; James M. Hood; Lawrence N. Hudson; Liselotte Johansson; Magnus Johansson; James R. Junker; Anssi Laurila; J. Russell Manson; Efpraxia Mavromati; Daniel Nelson; Jón S. Ólafsson; Daniel M. Perkins; Owen L. Petchey; Marco Plebani; Daniel C. Reuman; Bjoern C. Rall; Rebecca Stewart; Murray S. A. Thompson; Guy Woodward

Environmental warming is predicted to rise dramatically over the next century, yet few studies have investigated its effects in natural, multi-species systems. We present data collated over an 8-year period from a catchment of geothermally heated streams in Iceland, which acts as a natural experiment on the effects of warming across different organisational levels and spatiotemporal scales. Body sizes and population biomasses of individual species responded strongly to temperature, with some providing evidence to support temperature size rules. Macroinvertebrate and meiofaunal community composition also changed dramatically across the thermal gradient. Interactions within the warm streams in particular were characterised by food chains linking algae to snails to the apex predator, brown trout These chains were missing from the colder systems, where snails were replaced by much smaller herbivores and invertebrate omnivores were the top predators. Trout were also subsidised by terrestrial invertebrate prey, which could have an effect analogous to apparent competition within the aquatic prey assemblage. Top-down effects by snails on diatoms were stronger in the warmer streams, which could account for a shallowing of mass-abundance slopes across the community. This may indicate reduced energy transfer efficiency from resources to consumers in the warmer systems and/or a change in predator-prey mass ratios. All the ecosystem process rates investigated increased with temperature, but with differing thermal sensitivities, with important implications for overall ecosystem functioning (e.g. creating potential imbalances in elemental fluxes). Ecosystem respiration rose rapidly with temperature, leading to increased heterotrophy. There were also indications that food web stability may be lower in the warmer streams.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Long-term nutrient enrichment decouples predator and prey production.

John M. Davis; Amy D. Rosemond; Susan L. Eggert; Wyatt F. Cross; J. Bruce Wallace

Increased nutrient mobilization by human activities represents one of the greatest threats to global ecosystems, but its effects on ecosystem productivity can differ depending on food web structure. When this structure facilitates efficient energy transfers to higher trophic levels, evidence from previous large-scale enrichments suggests that nutrients can stimulate the production of multiple trophic levels. Here we report results from a 5-year continuous nutrient enrichment of a forested stream that increased primary consumer production, but not predator production. Because of strong positive correlations between predator and prey production (evidence of highly efficient trophic transfers) under reference conditions, we originally predicted that nutrient enrichment would stimulate energy flow to higher trophic levels. However, enrichment decoupled this strong positive correlation and produced a nonlinear relationship between predator and prey production. By increasing the dominance of large-bodied predator-resistant prey, nutrient enrichment truncated energy flow to predators and reduced food web efficiency. This unexpected decline in food web efficiency indicates that nutrient enrichment, a ubiquitous threat to aquatic ecosystems, may have unforeseen and unpredictable effects on ecosystem structure and productivity.


Global Change Biology | 2015

Interactions between temperature and nutrients across levels of ecological organization

Wyatt F. Cross; James M. Hood; Jonathan P. Benstead; Alexander D. Huryn; Daniel Nelson

Temperature and nutrient availability play key roles in controlling the pathways and rates at which energy and materials move through ecosystems. These factors have also changed dramatically on Earth over the past century as human activities have intensified. Although significant effort has been devoted to understanding the role of temperature and nutrients in isolation, less is known about how these two factors interact to influence ecological processes. Recent advances in ecological stoichiometry and metabolic ecology provide a useful framework for making progress in this area, but conceptual synthesis and review are needed to help catalyze additional research. Here, we examine known and potential interactions between temperature and nutrients from a variety of physiological, community, and ecosystem perspectives. We first review patterns at the level of the individual, focusing on four traits--growth, respiration, body size, and elemental content--that should theoretically govern how temperature and nutrients interact to influence higher levels of biological organization. We next explore the interactive effects of temperature and nutrients on populations, communities, and food webs by synthesizing information related to community size spectra, biomass distributions, and elemental composition. We use metabolic theory to make predictions about how population-level secondary production should respond to interactions between temperature and resource supply, setting up qualitative predictions about the flows of energy and materials through metazoan food webs. Last, we examine how temperature-nutrient interactions influence processes at the whole-ecosystem level, focusing on apparent vs. intrinsic activation energies of ecosystem processes, how to represent temperature-nutrient interactions in ecosystem models, and patterns with respect to nutrient uptake and organic matter decomposition. We conclude that a better understanding of interactions between temperature and nutrients will be critical for developing realistic predictions about ecological responses to multiple, simultaneous drivers of global change, including climate warming and elevated nutrient supply.


Ecology | 2009

Nutrient enrichment alters storage and fluxes of detritus in a headwater stream ecosystem.

Jonathan P. Benstead; Amy D. Rosemond; Wyatt F. Cross; J. Bruce Wallace; Susan L. Eggert; Keller Suberkropp; Vladislav Gulis; Jennifer L. Greenwood; Cynthia J. Tant

Responses of detrital pathways to nutrients may differ fundamentally from pathways involving living plants: basal carbon resources can potentially decrease rather than increase with nutrient enrichment. Despite the potential for nutrients to accelerate heterotrophic processes and fluxes of detritus, few studies have examined detritus-nutrient dynamics at whole-ecosystem scales. We quantified organic matter (OM) budgets over three consecutive years in two detritus-based Appalachian (U.S.A.) streams. After the first year, we began enriching one stream with low-level nitrogen and phosphorus inputs. Subsequent effects of nutrients on outputs of different OM compartments were determined using randomized intervention analysis. Nutrient addition did not affect dissolved or coarse particulate OM export but had dramatic effects on fine particulate OM (FPOM) export at all discharges relative to the reference stream. After two years of enrichment, FPOM export was 340% higher in the treatment stream but had decreased by 36% in the reference stream relative to pretreatment export. Ecosystem respiration, the dominant carbon output in these systems, also increased in the treatment stream relative to the reference, but these changes were smaller in magnitude than those in FPOM export. Nutrient enrichment accelerated rates of OM processing, transformation, and export, potentially altering food-web dynamics and ecosystem stability in the long term. The results of our large-scale manipulation of a detrital ecosystem parallel those from analogous studies of soils, in which net loss of organic carbon has often been shown to result from experimental nutrient addition at the plot scale. Streams are useful model systems in which to test the effects of nutrients on ecosystem-scale detrital dynamics because they allow both the tracking of OM conversion along longitudinal continua and the integrated measurement of fluxes of transformed material through downstream sites.


Global Change Biology | 2014

Climate change and geothermal ecosystems: natural laboratories, sentinel systems, and future refugia

Eoin J. O'Gorman; Jonathan P. Benstead; Wyatt F. Cross; Nikolai Friberg; James M. Hood; Philip W. Johnson; Bjarni D. Sigurdsson; Guy Woodward

Understanding and predicting how global warming affects the structure and functioning of natural ecosystems is a key challenge of the 21st century. Isolated laboratory and field experiments testing global change hypotheses have been criticized for being too small-scale and overly simplistic, whereas surveys are inferential and often confound temperature with other drivers. Research that utilizes natural thermal gradients offers a more promising approach and geothermal ecosystems in particular, which span a range of temperatures within a single biogeographic area, allow us to take the laboratory into nature rather than vice versa. By isolating temperature from other drivers, its ecological effects can be quantified without any loss of realism, and transient and equilibrial responses can be measured in the same system across scales that are not feasible using other empirical methods. Embedding manipulative experiments within geothermal gradients is an especially powerful approach, informing us to what extent small-scale experiments can predict the future behaviour of real ecosystems. Geothermal areas also act as sentinel systems by tracking responses of ecological networks to warming and helping to maintain ecosystem functioning in a changing landscape by providing sources of organisms that are preadapted to different climatic conditions. Here, we highlight the emerging use of geothermal systems in climate change research, identify novel research avenues, and assess their roles for catalysing our understanding of ecological and evolutionary responses to global warming.

Collaboration


Dive into the Wyatt F. Cross's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James M. Hood

Montana State University

View shared research outputs
Top Co-Authors

Avatar

Theodore A. Kennedy

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge