Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin J. Mahoney is active.

Publication


Featured researches published by Colin J. Mahoney.


Brain | 2012

Frontotemporal dementia with the C9ORF72 hexanucleotide repeat expansion: clinical, neuroanatomical and neuropathological features

Colin J. Mahoney; Jon Beck; Jonathan D. Rohrer; Tammaryn Lashley; Kin Mok; Tim Shakespeare; Tom Yeatman; Elizabeth K. Warrington; Jonathan M. Schott; Nick C. Fox; John Hardy; John Collinge; Tamas Revesz; Simon Mead; Jason D. Warren

An expanded hexanucleotide repeat in the C9ORF72 gene has recently been identified as a major cause of familial frontotemporal lobar degeneration and motor neuron disease, including cases previously identified as linked to chromosome 9. Here we present a detailed retrospective clinical, neuroimaging and histopathological analysis of a C9ORF72 mutation case series in relation to other forms of genetically determined frontotemporal lobar degeneration ascertained at a specialist centre. Eighteen probands (19 cases in total) were identified, representing 35% of frontotemporal lobar degeneration cases with identified mutations, 36% of cases with clinical evidence of motor neuron disease and 7% of the entire cohort. Thirty-three per cent of these C9ORF72 cases had no identified relevant family history. Families showed wide variation in clinical onset (43–68 years) and duration (1.7–22 years). The most common presenting syndrome (comprising a half of cases) was behavioural variant frontotemporal dementia, however, there was substantial clinical heterogeneity across the C9ORF72 mutation cohort. Sixty per cent of cases developed clinical features consistent with motor neuron disease during the period of follow-up. Anxiety and agitation and memory impairment were prominent features (between a half to two-thirds of cases), and dominant parietal dysfunction was also frequent. Affected individuals showed variable magnetic resonance imaging findings; however, relative to healthy controls, the group as a whole showed extensive thinning of frontal, temporal and parietal cortices, subcortical grey matter atrophy including thalamus and cerebellum and involvement of long intrahemispheric, commissural and corticospinal tracts. The neuroimaging profile of the C9ORF72 expansion was significantly more symmetrical than progranulin mutations with significantly less temporal lobe involvement than microtubule-associated protein tau mutations. Neuropathological examination in six cases with C9ORF72 mutation from the frontotemporal lobar degeneration series identified histomorphological features consistent with either type A or B TAR DNA-binding protein-43 deposition; however, p62-positive (in excess of TAR DNA-binding protein-43 positive) neuronal cytoplasmic inclusions in hippocampus and cerebellum were a consistent feature of these cases, in contrast to the similar frequency of p62 and TAR DNA-binding protein-43 deposition in 53 control cases with frontotemporal lobar degeneration–TAR DNA-binding protein. These findings corroborate the clinical importance of the C9ORF72 mutation in frontotemporal lobar degeneration, delineate phenotypic and neuropathological features that could help to guide genetic testing, and suggest hypotheses for elucidating the neurobiology of a culprit subcortical network.


American Journal of Human Genetics | 2013

Large C9orf72 Hexanucleotide Repeat Expansions Are Seen in Multiple Neurodegenerative Syndromes and Are More Frequent Than Expected in the UK Population

Jon Beck; Mark Poulter; Davina Hensman; Jonathan D. Rohrer; Colin J. Mahoney; Gary Adamson; Tracy Campbell; James Uphill; Aaron Borg; Pietro Fratta; Richard W. Orrell; Andrea Malaspina; James B. Rowe; Jeremy M Brown; John R. Hodges; Katie Sidle; James M. Polke; Henry Houlden; Jonathan M. Schott; Nick C. Fox; Sarah J. Tabrizi; Adrian M. Isaacs; John Hardy; Jason D. Warren; John Collinge; Simon Mead

Hexanucleotide repeat expansions in C9orf72 are a major cause of frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS). Understanding the disease mechanisms and a method for clinical diagnostic genotyping have been hindered because of the difficulty in estimating the expansion size. We found 96 repeat-primed PCR expansions: 85/2,974 in six neurodegenerative diseases cohorts (FTLD, ALS, Alzheimer disease, sporadic Creutzfeldt-Jakob disease, Huntington disease-like syndrome, and other nonspecific neurodegenerative disease syndromes) and 11/7,579 (0.15%) in UK 1958 birth cohort (58BC) controls. With the use of a modified Southern blot method, the estimated expansion range (smear maxima) in cases was 800-4,400. Similarly, large expansions were detected in the population controls. Differences in expansion size and morphology were detected between DNA samples from tissue and cell lines. Of those in whom repeat-primed PCR detected expansions, 68/69 were confirmed by blotting, which was specific for greater than 275 repeats. We found that morphology in the expansion smear varied among different individuals and among different brain regions in the same individual. Expansion size correlated with age at clinical onset but did not differ between diagnostic groups. Evidence of instability of repeat size in control families, as well as neighboring SNP and microsatellite analyses, support multiple expansion events on the same haplotype background. Our method of estimating the size of large expansions has potential clinical utility. C9orf72-related disease might mimic several neurodegenerative disorders and, with potentially 90,000 carriers in the United Kingdom, is more common than previously realized.


PLOS ONE | 2012

Creation of an Open-Access, Mutation-Defined Fibroblast Resource for Neurological Disease Research

Selina Wray; Matthew Self; Patrick A. Lewis; Jan-Willem Taanman; Natalie S. Ryan; Colin J. Mahoney; Yuying Liang; Michael J. Devine; Una-Marie Sheerin; Henry Houlden; Huw R. Morris; Daniel G. Healy; Jose-Felix Marti-Masso; Elisavet Preza; Suzanne Barker; Margaret Sutherland; Roderick A. Corriveau; Michael R D'Andrea; A. H. V. Schapira; Ryan J. Uitti; Mark Guttman; Grzegorz Opala; Barbara Jasinska-Myga; Andreas Puschmann; Christer Nilsson; Alberto J. Espay; Jarosław Sławek; Ludwig Gutmann; Bradley F. Boeve; Kevin B. Boylan

Our understanding of the molecular mechanisms of many neurological disorders has been greatly enhanced by the discovery of mutations in genes linked to familial forms of these diseases. These have facilitated the generation of cell and animal models that can be used to understand the underlying molecular pathology. Recently, there has been a surge of interest in the use of patient-derived cells, due to the development of induced pluripotent stem cells and their subsequent differentiation into neurons and glia. Access to patient cell lines carrying the relevant mutations is a limiting factor for many centres wishing to pursue this research. We have therefore generated an open-access collection of fibroblast lines from patients carrying mutations linked to neurological disease. These cell lines have been deposited in the National Institute for Neurological Disorders and Stroke (NINDS) Repository at the Coriell Institute for Medical Research and can be requested by any research group for use in in vitro disease modelling. There are currently 71 mutation-defined cell lines available for request from a wide range of neurological disorders and this collection will be continually expanded. This represents a significant resource that will advance the use of patient cells as disease models by the scientific community.


IEEE Transactions on Medical Imaging | 2014

Attenuation Correction Synthesis for Hybrid PET-MR Scanners: Application to Brain Studies

Ninon Burgos; M. Jorge Cardoso; Kris Thielemans; Marc Modat; Stefano Pedemonte; John Dickson; Anna Barnes; Rebekah Ahmed; Colin J. Mahoney; Jonathan M. Schott; John S. Duncan; David Atkinson; Simon R. Arridge; Brian F. Hutton; Sebastien Ourselin

Attenuation correction is an essential requirement for quantification of positron emission tomography (PET) data. In PET/CT acquisition systems, attenuation maps are derived from computed tomography (CT) images. However, in hybrid PET/MR scanners, magnetic resonance imaging (MRI) images do not directly provide a patient-specific attenuation map. The aim of the proposed work is to improve attenuation correction for PET/MR scanners by generating synthetic CTs and attenuation maps. The synthetic images are generated through a multi-atlas information propagation scheme, locally matching the MRI-derived patients morphology to a database of MRI/CT pairs, using a local image similarity measure. Results show significant improvements in CT synthesis and PET reconstruction accuracy when compared to a segmentation method using an ultrashort-echo-time MRI sequence and to a simplified atlas-based method.


Neuron | 2013

Pathogenic VCP Mutations Induce Mitochondrial Uncoupling and Reduced ATP Levels

Fernando Bartolome; Hsiu-Chuan Wu; Victoria S Burchell; Elisavet Preza; Selina Wray; Colin J. Mahoney; Nick C. Fox; Andrea Calvo; Antonio Canosa; Cristina Moglia; Jessica Mandrioli; Adriano Chiò; Richard W. Orrell; Henry Houlden; John Hardy; Andrey Y. Abramov; Helene Plun-Favreau

Summary Valosin-containing protein (VCP) is a highly expressed member of the type II AAA+ ATPase family. VCP mutations are the cause of inclusion body myopathy, Paget’s disease of the bone, and frontotemporal dementia (IBMPFD) and they account for 1%–2% of familial amyotrophic lateral sclerosis (ALS). Using fibroblasts from patients carrying three independent pathogenic mutations in the VCP gene, we show that VCP deficiency causes profound mitochondrial uncoupling leading to decreased mitochondrial membrane potential and increased mitochondrial oxygen consumption. This mitochondrial uncoupling results in a significant reduction of cellular ATP production. Decreased ATP levels in VCP-deficient cells lower their energy capacity, making them more vulnerable to high energy-demanding processes such as ischemia. Our findings propose a mechanism by which pathogenic VCP mutations lead to cell death.


Neurobiology of Aging | 2013

White matter tract signatures of the progressive aphasias.

Colin J. Mahoney; Ian B. Malone; Gerard R. Ridgway; Aisling H. Buckley; Laura E. Downey; Hannah L. Golden; Natalie S. Ryan; Sebastien Ourselin; Jonathan M. Schott; Nick C. Fox; Jason D. Warren

The primary progressive aphasias (PPA) are a heterogeneous group of language-led neurodegenerative diseases resulting from large-scale brain network degeneration. White matter (WM) pathways bind networks together, and might therefore hold information about PPA pathogenesis. Here we used diffusion tensor imaging and tract-based spatial statistics to compare WM tract changes between PPA syndromes and with respect to Alzheimers disease and healthy controls in 33 patients with PPA (13 nonfluent/agrammatic PPA); 10 logopenic variant PPA; and 10 semantic variant PPA. Nonfluent/agrammatic PPA was associated with predominantly left-sided and anterior tract alterations including uncinate fasciculus (UF) and subcortical projections; semantic variant PPA with bilateral alterations in inferior longitudinal fasciculus and UF; and logopenic variant PPA with bilateral but predominantly left-sided alterations in inferior longitudinal fasciculus, UF, superior longitudinal fasciculus, and subcortical projections. Tract alterations were more extensive than gray matter alterations, and the extent of alteration across tracts and PPA syndromes varied between diffusivity metrics. These WM signatures of PPA syndromes illustrate the selective vulnerability of brain language networks in these diseases and might have some pathologic specificity.


Alzheimer's Research & Therapy | 2012

Longitudinal neuroimaging and neuropsychological profiles of frontotemporal dementia with C9ORF72 expansions

Colin J. Mahoney; Laura E. Downey; Gerard R. Ridgway; Jon Beck; Shona Clegg; Melanie Blair; Sarah Finnegan; Kelvin K. Leung; Tom Yeatman; Hannah L. Golden; Simon Mead; Jonathan D. Rohrer; Nick C. Fox; Jason D. Warren

IntroductionFrontotemporal dementia (FTD) is a common cause of early-onset dementia with a significant genetic component, as underlined by the recent identification of repeat expansions in the gene C9ORF72 as a major cause of FTD and motor neuron disease. Understanding the neurobiology and clinical phenomenology of this novel mutation is currently a major research focus. However, few data are available concerning the longitudinal evolution of this genetic disease. Here we present longitudinal neuropsychological and neuroimaging data on a cohort of patients with pathological repeat expansions in C9ORF72.MethodsFollowing a review of the University College London FTD DNA database, 20 cases were retrospectively identified with a C9ORF72 expansion. Twelve cases had longitudinal neuropsychology data available and six of these cases also had longitudinal volumetric brain magnetic resonance imaging. Cortical and subcortical volumes were extracted using FreeSurfer. Rates of whole brain, hemispheric, cerebellar and ventricular change were calculated for each subject. Nonlinear fluid registration of follow-up to baseline scan was performed to visualise longitudinal intra-subject patterns of brain atrophy and ventricular expansion.ResultsPatients had low average verbal and performance IQ at baseline that became impaired (< 5th percentile) at follow-up. In particular, visual memory, naming and dominant parietal skills all showed deterioration. Mean rates of whole brain atrophy (1.4%/year) and ventricular expansion (3.2 ml/year) were substantially greater in patients with the C9ORF72 mutation than in healthy controls; atrophy was symmetrical between the cerebral hemispheres within the C9ORF72 mutation group. The thalamus and cerebellum showed significant atrophy whereas no cortical areas were preferentially affected. Longitudinal fluid imaging in individual patients demonstrated heterogeneous patterns of progressive volume loss; however, ventricular expansion and cerebellar volume loss were consistent findings.ConclusionDisease evolution in C9ORF72-associated FTD is linked neuropsychologically with increasing involvement of parietal and amnestic functions, and neuroanatomically with rather diffuse and variable cortical and central atrophy but more consistent involvement of the cerebellum and thalamus. These longitudinal profiles are consistent with disease spread within a distributed subcortical network and demonstrate the feasibility of longitudinal biomarkers for tracking the evolution of the C9ORF72 mutation phenotype.


Human Brain Mapping | 2014

Profiles of White Matter Tract Pathology in Frontotemporal Dementia

Colin J. Mahoney; Gerard R. Ridgway; Ian B. Malone; Laura E. Downey; Jonathan Beck; Kirsi M. Kinnunen; Nicole Schmitz; Hannah L. Golden; Jonathan D. Rohrer; Jonathan M. Schott; Sebastien Ourselin; Simon Mead; Nick C. Fox; Jason D. Warren

Despite considerable interest in improving clinical and neurobiological characterisation of frontotemporal dementia and in defining the role of brain network disintegration in its pathogenesis, information about white matter pathway alterations in frontotemporal dementia remains limited. Here we investigated white matter tract damage using an unbiased, template‐based diffusion tensor imaging (DTI) protocol in a cohort of 27 patients with the behavioral variant of frontotemporal dementia (bvFTD) representing both major genetic and sporadic forms, in relation both to healthy individuals and to patients with Alzheimers disease. Widespread white matter tract pathology was identified in the bvFTD group compared with both healthy controls and Alzheimers disease group, with prominent involvement of uncinate fasciculus, cingulum bundle and corpus callosum. Relatively discrete and distinctive white matter profiles were associated with genetic subgroups of bvFTD associated with MAPT and C9ORF72 mutations. Comparing diffusivity metrics, optimal overall separation of the bvFTD group from the healthy control group was signalled using radial diffusivity, whereas optimal overall separation of the bvFTD group from the Alzheimers disease group was signalled using fractional anisotropy. Comparing white matter changes with regional grey matter atrophy (delineated using voxel based morphometry) in the bvFTD cohort revealed co‐localisation between modalities particularly in the anterior temporal lobe, however white matter changes extended widely beyond the zones of grey matter atrophy. Our findings demonstrate a distributed signature of white matter alterations that is likely to be core to the pathophysiology of bvFTD and further suggest that this signature is modulated by underlying molecular pathologies. Hum Brain Mapp 35:4163–4179, 2014.


Brain and Language | 2013

Patterns of longitudinal brain atrophy in the logopenic variant of primary progressive aphasia

Jonathan D. Rohrer; Francesca Caso; Colin J. Mahoney; Maya L. Henry; Howard J. Rosen; Gil D. Rabinovici; Bruce L. Miller; Jason D. Warren; Nick C. Fox; Gerard R. Ridgway; Maria Luisa Gorno-Tempini

Highlights ► Patterns of cell loss in lvPPA remain asymmetrical over time. ► More anterior left hemisphere areas become involved over time. ► Right hemisphere regions become affected that mirror early left hemisphere change. ► Left hemisphere atrophy rates are greater than right hemisphere. ► Over time patients with lvPPA develop single word level processing deficits.


Alzheimers & Dementia | 2014

R47H TREM2 variant increases risk of typical early-onset Alzheimer's disease but not of prion or frontotemporal dementia

Catherine F. Slattery; Jonathan Beck; Lorna Harper; Gary Adamson; Zeinab Abdi; James Uphill; Tracy Campbell; Ron Druyeh; Colin J. Mahoney; Jonathan D. Rohrer; Janna Kenny; Jessica Lowe; Kelvin K. Leung; Josephine Barnes; Shona Clegg; Melanie Blair; Jennifer M. Nicholas; Rita Guerreiro; James B. Rowe; Claudia Ponto; Inga Zerr; Hans A. Kretzschmar; Pierluigi Gambetti; Sebastian J. Crutch; Jason D. Warren; Nick C. Fox; John Collinge; Jonathan M. Schott; Simon Mead

Rare TREM2 variants are significant risk factors for Alzheimers disease (AD).

Collaboration


Dive into the Colin J. Mahoney's collaboration.

Top Co-Authors

Avatar

Jason D. Warren

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Nick C. Fox

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laura E. Downey

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Simon Mead

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar

Hannah L. Golden

UCL Institute of Neurology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Natalie S. Ryan

University College London

View shared research outputs
Researchain Logo
Decentralizing Knowledge