Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin J. Murphy is active.

Publication


Featured researches published by Colin J. Murphy.


Nature Nanotechnology | 2011

Experimental demonstration of a single-molecule electric motor

Heather L. Tierney; Colin J. Murphy; April D. Jewell; Ashleigh E. Baber; Erin V. Iski; Harout Y. Khodaverdian; Allister F. McGuire; Nikolai Klebanov; E. Charles H. Sykes

For molecules to be used as components in molecular machines, methods that couple individual molecules to external energy sources and that selectively excite motion in a given direction are required. Significant progress has been made in the construction of molecular motors powered by light and by chemical reactions, but electrically driven motors have not yet been built, despite several theoretical proposals for such motors. Here we report that a butyl methyl sulphide molecule adsorbed on a copper surface can be operated as a single-molecule electric motor. Electrons from a scanning tunnelling microscope are used to drive the directional motion of the molecule in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. The direction and rate of the rotation are related to the chiralities of both the molecule and the tip of the microscope (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.


ACS Nano | 2013

Molecular-Scale Perspective of Water-Catalyzed Methanol Dehydrogenation to Formaldehyde

Matthew B. Boucher; Matthew D. Marcinkowski; Melissa L. Liriano; Colin J. Murphy; Emily A. Lewis; April D. Jewell; Michael F. G. Mattera; Georgios Kyriakou; Maria Flytzani-Stephanopoulos; E. Charles H. Sykes

Methanol steam reforming is a promising reaction for on-demand hydrogen production. Copper catalysts have excellent activity and selectivity for methanol conversion to hydrogen and carbon dioxide. This product balance is dictated by the formation and weak binding of formaldehyde, the key reaction intermediate. It is widely accepted that oxygen adatoms or oxidized copper are required to activate methanol. However, we show herein by studying a well-defined metallic copper surface that water alone is capable of catalyzing the conversion of methanol to formaldehyde. Our results indicate that six or more water molecules act in concert to deprotonate methanol to methoxy. Isolated palladium atoms in the copper surface further promote this reaction. This work reveals an unexpected role of water, which is typically considered a bystander in this key chemical transformation.


ACS Nano | 2012

Quantum Tunneling Enabled Self-Assembly of Hydrogen Atoms on Cu(111)

April D. Jewell; Guowen Peng; Michael F. G. Mattera; Emily A. Lewis; Colin J. Murphy; Georgios Kyriakou; Manos Mavrikakis; E. Charles H. Sykes

Atomic and molecular self-assembly are key phenomena that underpin many important technologies. Typically, thermally enabled diffusion allows a system to sample many areas of configurational space, and ordered assemblies evolve that optimize interactions between species. Herein we describe a system in which the diffusion is quantum tunneling in nature and report the self-assembly of H atoms on a Cu(111) surface into complex arrays based on local clustering followed by larger scale islanding of these clusters. By scanning tunneling microscope tip-induced scrambling of H atom assemblies, we are able to watch the atomic scale details of H atom self-assembly in real time. The ordered arrangements we observe are complex and very different from those formed by H on other metals that occur in much simpler geometries. We contrast the diffusion and assembly of H with D, which has a much slower tunneling rate and is not able to form the large islands observed with H over equivalent time scales. Using density functional theory, we examine the interaction of H atoms on Cu(111) by calculating the differential binding energy as a function of H coverage. At the temperature of the experiments (5 K), H(D) diffusion by quantum tunneling dominates. The quantum-tunneling-enabled H and D diffusion is studied using a semiclassically corrected transition state theory coupled with density functional theory. This system constitutes the first example of quantum-tunneling-enabled self-assembly, while simultaneously demonstrating the complex ordering of H on Cu(111), a catalytically relevant surface.


Journal of Chemical Physics | 2014

Structure and energetics of hydrogen-bonded networks of methanol on close packed transition metal surfaces

Colin J. Murphy; Javier Carrasco; Timothy J. Lawton; Melissa L. Liriano; Ashleigh E. Baber; Emily A. Lewis; Angelos Michaelides; E. Charles H. Sykes

Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.


ACS Nano | 2013

Visualization of compression and spillover in a coadsorbed system: syngas on cobalt nanoparticles.

Emily A. Lewis; Duy Le; April D. Jewell; Colin J. Murphy; Talat S. Rahman; E. Charles H. Sykes

Competitive adsorption and lateral pressure between surface-bound intermediates are important effects that dictate chemical reactivity. Lateral, or two-dimensional, pressure is known to promote reactivity by lowering energetic barriers and increasing conversion to products. We examined the coadsorption of CO and H2, the two reactants in the industrially important Fischer-Tropsch synthesis, on Co nanoparticles to investigate the effect of two-dimensional pressure. Using scanning tunneling microscopy, we directly visualized the coadsorption of H and CO on Co, and we found that the two adsorbates remain in segregated phases. CO adsorbs on the Co nanoparticles via spillover from the Cu(111) support, and when deposited onto preadsorbed adlayers of H, CO exerts two-dimensional pressure on H, compressing it into a higher-density, energetically less-preferred structure. By depositing excess CO, we found that H on the Co surface is forced to spill over onto the Cu(111) support. Thus, spillover of H from Co onto Cu, where it would not normally reside due to the high activation barrier, is preferred over desorption. We corroborated the mechanism of this spillover-induced displacement by calculating the relevant energetics using density functional theory, which show that the displacement of H from Co is compensated for by the formation of strong CO-Co bonds. These results may have significant ramifications for Fischer-Tropsch synthesis kinetics on Co, as the segregation of CO and H, as well as the displacement of H by CO, limits the interface between the two molecules.


Journal of the American Chemical Society | 2017

Water–Ice Analogues of Polycyclic Aromatic Hydrocarbons: Water Nanoclusters on Cu(111)

Melissa L. Liriano; Chiara Gattinoni; Emily A. Lewis; Colin J. Murphy; E. Charles H. Sykes; Angelos Michaelides

Water has an incredible ability to form a rich variety of structures, with 16 bulk ice phases identified, for example, as well as numerous distinct structures for water at interfaces or under confinement. Many of these structures are built from hexagonal motifs of water molecules, and indeed, for water on metal surfaces, individual hexamers of just six water molecules have been observed. Here, we report the results of low-temperature scanning tunneling microscopy experiments and density functional theory calculations which reveal a host of new structures for water–ice nanoclusters when adsorbed on an atomically flat Cu surface. The H-bonding networks within the nanoclusters resemble the resonance structures of polycyclic aromatic hydrocarbons, and water–ice analogues of inene, naphthalene, phenalene, anthracene, phenanthrene, and triphenylene have been observed. The specific structures identified and the H-bonding patterns within them reveal new insight about water on metals that allows us to refine the so-called “2D ice rules”, which have so far proved useful in understanding water–ice structures at solid surfaces.


Chemical Record | 2014

Development of an Electrically Driven Molecular Motor

Colin J. Murphy; E. Charles H. Sykes

For molecules to be used as components in molecular machinery, methods are required that couple individual molecules to external energy sources in order to selectively excite motion in a given direction. While significant progress has been made in the construction of synthetic molecular motors powered by light and by chemical reactions, there are few experimental examples of electrically driven molecular motors. To this end, we pioneered the use of a new, stable and tunable molecular rotor system based on surface-bound thioethers to comprehensively study many aspects of molecular rotation. As biological molecular motors often operate at interfaces, our synthetic system is especially amenable to microscopic interrogation as compared to solution-based systems. Using scanning tunneling microscopy (STM) and density functional theory, we studied the rotation of surface-bound thioethers, which can be induced either thermally or by electrons from the STM tip in a two-terminal setup. Moreover, the temperature and electron flux can be adjusted to allow each rotational event to be monitored at the molecular scale in real time. This work culminated in the first experimental demonstration of a single-molecule electric motor, where the electrically driven rotation of a butyl methyl sulfide molecule adsorbed on a copper surface could be directionally biased. The direction and rate of the rotation are related to the chirality of both the molecule and the STM tip (which serves as the electrode), illustrating the importance of the symmetry of the metal contacts in atomic-scale electrical devices.


Journal of Chemical Physics | 2016

The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol

Melissa L. Liriano; Javier Carrasco; Emily A. Lewis; Colin J. Murphy; Timothy J. Lawton; Matthew D. Marcinkowski; Andrew J. Therrien; Angelos Michaelides; E. Charles H. Sykes

The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecules intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the networks enantioselective interaction with other molecules.


Journal of Chemical Physics | 2015

Impact of branching on the supramolecular assembly of thioethers on Au(111)

Colin J. Murphy; Xue-Rong Shi; April D. Jewell; Allister F. McGuire; Darin O. Bellisario; Ashleigh E. Baber; Heather L. Tierney; Emily A. Lewis; David S. Sholl; E. Charles H. Sykes

Alkanethiolate monolayers are one of the most comprehensively studied self-assembled systems due to their ease of preparation, their ability to be functionalized, and the opportunity to control their thickness perpendicular to the surface. However, these systems suffer from degradation due to oxidation and defects caused by surface etching and adsorbate rotational boundaries. Thioethers offer a potential alternative to thiols that overcome some of these issues and allow dimensional control of self-assembly parallel to the surface. Thioethers have found uses in surface modification of nanoparticles, and chiral thioethers tethered to catalytically active surfaces have been shown to enable enantioselective hydrogenation. However, the effect of structural, chemical, and chiral modifications of the alkyl chains of thioethers on their self-assembly has remained largely unstudied. To elucidate how molecular structure, particularly alkyl branching and chirality, affects molecular self-assembly, we compare four related thioethers, including two pairs of structural isomers. The self-assembly of structural isomers N-butyl methyl sulfide and tert-butyl methyl sulfide was studied with high resolution scanning tunneling microscopy (STM); our results indicate that both molecules form highly ordered arrays despite the bulky tert-butyl group. We also investigated the effect of intrinsic chirality in the alkyl tails on the adsorption and self-assembly of butyl sec-butyl sulfide (BSBS) with STM and density functional theory and contrast our results to its structural isomer, dibutyl sulfide. Calculations provide the relative stability of the four stereoisomers of BSBS and STM imaging reveals two prominent monomer forms. Interestingly, the racemic mixture of BSBS is the only thioether we have examined to date that does not form highly ordered arrays; we postulate that this is due to weak enantiospecific intermolecular interactions that lead to the formation of energetically similar but structurally different assemblies. Furthermore, we studied all of the molecules in their monomeric molecular rotor form, and the surface-adsorbed chirality of the three asymmetric thioethers is distinguishable in STM images.


ACS Nano | 2016

Atomic-Scale Picture of the Composition, Decay, and Oxidation of Two-Dimensional Radioactive Films

Alex Pronschinske; Philipp Pedevilla; Coughlin B; Colin J. Murphy; Felicia R. Lucci; Payne Ma; Gellman Aj; Angelos Michaelides; Sykes Ec

Two-dimensional radioactive (125)I monolayers are a recent development that combines the fields of radiochemistry and nanoscience. These Au-supported monolayers show great promise for understanding the local interaction of radiation with 2D molecular layers, offer different directions for surface patterning, and enhance the emission of chemically and biologically relevant low-energy electrons. However, the elemental composition of these monolayers is in constant flux due to the nuclear transmutation of (125)I to (125)Te, and their precise composition and stability under ambient conditions has yet to be elucidated. Unlike I, which is stable and unreactive when bound to Au, the newly formed Te atoms would be expected to be more reactive. We have used electron emission and X-ray photoelectron spectroscopy (XPS) to quantify the emitted electron energies and to track the film composition in vacuum and the effect of exposure to ambient conditions. Our results reveal that the Auger electrons emitted during the ultrafast radioactive decay process have a kinetic energy corresponding to neutral Te. By combining XPS and scanning tunneling microscopy experiments with density functional theory, we are able to identify the reaction of newly formed Te to TeO2 and its subsequent dimerization. The fact that the Te2O4 units stay intact during major lateral rearrangement of the monolayer illustrates their stability. These results provide an atomic-scale picture of the composition and mobility of surface species in a radioactive monolayer as well as an understanding of the stability of the films under ambient conditions, which is a critical aspect in their future applications.

Collaboration


Dive into the Colin J. Murphy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

April D. Jewell

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Angelos Michaelides

London Centre for Nanotechnology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge