Melissa L. Liriano
Tufts University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Melissa L. Liriano.
ACS Nano | 2013
Matthew B. Boucher; Matthew D. Marcinkowski; Melissa L. Liriano; Colin J. Murphy; Emily A. Lewis; April D. Jewell; Michael F. G. Mattera; Georgios Kyriakou; Maria Flytzani-Stephanopoulos; E. Charles H. Sykes
Methanol steam reforming is a promising reaction for on-demand hydrogen production. Copper catalysts have excellent activity and selectivity for methanol conversion to hydrogen and carbon dioxide. This product balance is dictated by the formation and weak binding of formaldehyde, the key reaction intermediate. It is widely accepted that oxygen adatoms or oxidized copper are required to activate methanol. However, we show herein by studying a well-defined metallic copper surface that water alone is capable of catalyzing the conversion of methanol to formaldehyde. Our results indicate that six or more water molecules act in concert to deprotonate methanol to methoxy. Isolated palladium atoms in the copper surface further promote this reaction. This work reveals an unexpected role of water, which is typically considered a bystander in this key chemical transformation.
Journal of Chemical Physics | 2014
Colin J. Murphy; Javier Carrasco; Timothy J. Lawton; Melissa L. Liriano; Ashleigh E. Baber; Emily A. Lewis; Angelos Michaelides; E. Charles H. Sykes
Methanol is a versatile chemical feedstock, fuel source, and energy storage material. Many reactions involving methanol are catalyzed by transition metal surfaces, on which hydrogen-bonded methanol overlayers form. As with water, the structure of these overlayers is expected to depend on a delicate balance of hydrogen bonding and adsorbate-substrate bonding. In contrast to water, however, relatively little is known about the structures methanol overlayers form and how these vary from one substrate to another. To address this issue, herein we analyze the hydrogen bonded networks that methanol forms as a function of coverage on three catalytically important surfaces, Au(111), Cu(111), and Pt(111), using a combination of scanning tunneling microscopy and density functional theory. We investigate the effect of intermolecular interactions, surface coverage, and adsorption energies on molecular assembly and compare the results to more widely studied water networks on the same surfaces. Two main factors are shown to direct the structure of methanol on the surfaces studied: the surface coverage and the competition between the methanol-methanol and methanol-surface interactions. Additionally, we report a new chiral form of buckled hexamer formed by surface bound methanol that maximizes the interactions between methanol monomers by sacrificing interactions with the surface. These results serve as a direct comparison of interaction strength, assembly, and chirality of methanol networks on Au(111), Cu(111), and Pt(111) which are catalytically relevant for methanol oxidation, steam reforming, and direct methanol fuel cells.
Journal of the American Chemical Society | 2017
Melissa L. Liriano; Chiara Gattinoni; Emily A. Lewis; Colin J. Murphy; E. Charles H. Sykes; Angelos Michaelides
Water has an incredible ability to form a rich variety of structures, with 16 bulk ice phases identified, for example, as well as numerous distinct structures for water at interfaces or under confinement. Many of these structures are built from hexagonal motifs of water molecules, and indeed, for water on metal surfaces, individual hexamers of just six water molecules have been observed. Here, we report the results of low-temperature scanning tunneling microscopy experiments and density functional theory calculations which reveal a host of new structures for water–ice nanoclusters when adsorbed on an atomically flat Cu surface. The H-bonding networks within the nanoclusters resemble the resonance structures of polycyclic aromatic hydrocarbons, and water–ice analogues of inene, naphthalene, phenalene, anthracene, phenanthrene, and triphenylene have been observed. The specific structures identified and the H-bonding patterns within them reveal new insight about water on metals that allows us to refine the so-called “2D ice rules”, which have so far proved useful in understanding water–ice structures at solid surfaces.
Journal of Chemical Physics | 2016
Melissa L. Liriano; Javier Carrasco; Emily A. Lewis; Colin J. Murphy; Timothy J. Lawton; Matthew D. Marcinkowski; Andrew J. Therrien; Angelos Michaelides; E. Charles H. Sykes
The assembly of complex structures in nature is driven by an interplay between several intermolecular interactions, from strong covalent bonds to weaker dispersion forces. Understanding and ultimately controlling the self-assembly of materials requires extensive study of how these forces drive local nanoscale interactions and how larger structures evolve. Surface-based self-assembly is particularly amenable to modeling and measuring these interactions in well-defined systems. This study focuses on 2-butanol, the simplest aliphatic chiral alcohol. 2-butanol has recently been shown to have interesting properties as a chiral modifier of surface chemistry; however, its mode of action is not fully understood and a microscopic understanding of the role non-covalent interactions play in its adsorption and assembly on surfaces is lacking. In order to probe its surface properties, we employed high-resolution scanning tunneling microscopy and density functional theory (DFT) simulations. We found a surprisingly rich degree of enantiospecific adsorption, association, chiral cluster growth and ultimately long range, highly ordered chiral templating. Firstly, the chiral molecules acquire a second chiral center when adsorbed to the surface via dative bonding of one of the oxygen atom lone pairs. This interaction is controlled via the molecules intrinsic chiral center leading to monomers of like chirality, at both chiral centers, adsorbed on the surface. The monomers then associate into tetramers via a cyclical network of hydrogen bonds with an opposite chirality at the oxygen atom. The evolution of these square units is surprising given that the underlying surface has a hexagonal symmetry. Our DFT calculations, however, reveal that the tetramers are stable entities that are able to associate with each other by weaker van der Waals interactions and tessellate in an extended square network. This network of homochiral square pores grows to cover the whole Au(111) surface. Our data reveal that the chirality of a simple alcohol can be transferred to its surface binding geometry, drive the directionality of hydrogen-bonded networks and ultimately extended structure. Furthermore, this study provides the first microscopic insight into the surface properties of this important chiral modifier and provides a well-defined system for studying the networks enantioselective interaction with other molecules.
Journal of Chemical Physics | 2018
Melissa L. Liriano; Amanda M. Larson; Chiara Gattinoni; Javier Carrasco; Ashleigh E. Baber; Emily A. Lewis; Colin J. Murphy; Timothy J. Lawton; Matthew D. Marcinkowski; Andrew J. Therrien; Angelos Michaelides; E. Charles H. Sykes
The delicate balance between hydrogen bonding and van der Waals interactions determines the stability, structure, and chirality of many molecular and supramolecular aggregates weakly adsorbed on solid surfaces. Yet the inherent complexity of these systems makes their experimental study at the molecular level very challenging. In this quest, small alcohols adsorbed on metal surfaces have become a useful model system to gain fundamental insight into the interplay of such molecule-surface and molecule-molecule interactions. Here, through a combination of scanning tunneling microscopy and density functional theory, we compare and contrast the adsorption and self-assembly of a range of small alcohols from methanol to butanol on Au(111). We find that longer chained alcohols prefer to form zigzag chains held together by extended hydrogen bonded networks between adjacent molecules. When alcohols bind to a metal surface datively via one of the two lone electron pairs of the oxygen atom, they become chiral. Therefore, the chain structures are formed by a hydrogen-bonded network between adjacent molecules with alternating adsorbed chirality. These chain structures accommodate longer alkyl tails through larger unit cells, while the position of the hydroxyl group within the alcohol molecule can produce denser unit cells that maximize intermolecular interactions. Interestingly, when intrinsic chirality is introduced into the molecule as in the case of 2-butanol, the assembly changes completely and square packing structures with chiral pockets are observed. This is rationalized by the fact that the intrinsic chirality of the molecule directs the chirality of the adsorbed hydroxyl group meaning that heterochiral chain structures cannot form. Overall this study provides a general framework for understanding the effect of simple alcohol molecular adstructures on hydrogen bonded aggregates and paves the way for rationalizing 2D chiral supramolecular assembly.
Chemical Communications | 2014
Emily A. Lewis; Colin J. Murphy; Melissa L. Liriano; E. Charles H. Sykes
ACS Catalysis | 2017
Matthew D. Marcinkowski; Jilei Liu; Colin J. Murphy; Melissa L. Liriano; Natalie A. Wasio; Felicia R. Lucci; Maria Flytzani-Stephanopoulos; E. Charles H. Sykes
Journal of Physical Chemistry C | 2012
Emily A. Lewis; Duy Le; Colin J. Murphy; April D. Jewell; Michael F. G. Mattera; Melissa L. Liriano; Talat S. Rahman; E. Charles H. Sykes
ACS Catalysis | 2015
Matthew D. Marcinkowski; Colin J. Murphy; Melissa L. Liriano; Natalie A. Wasio; Felicia R. Lucci; E. Charles H. Sykes
Chemical Communications | 2014
Emily A. Lewis; Colin J. Murphy; Alex Pronschinske; Melissa L. Liriano; E. C. H. Sykes