Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin K. W. Watts is active.

Publication


Featured researches published by Colin K. W. Watts.


Molecular and Cellular Biology | 1993

Growth factor, steroid, and steroid antagonist regulation of cyclin gene expression associated with changes in T-47D human breast cancer cell cycle progression

Elizabeth A. Musgrove; Jenny A. Hamilton; Christine S. L. Lee; Kimberley J. E. Sweeney; Colin K. W. Watts; Robert L. Sutherland

Cyclins and proto-oncogenes including c-myc have been implicated in eukaryotic cell cycle control. The role of cyclins in steroidal regulation of cell proliferation is unknown, but a role for c-myc has been suggested. This study investigated the relationship between regulation of T-47D breast cancer cell cycle progression, particularly by steroids and their antagonists, and changes in the levels of expression of these genes. Sequential induction of cyclins D1 (early G1 phase), D3, E, A (late G1-early S phase), and B1 (G2 phase) was observed following insulin stimulation of cell cycle progression in serum-free medium. Transient acceleration of G1-phase cells by progestin was also accompanied by rapid induction of cyclin D1, apparent within 2 h. This early induction of cyclin D1 and the ability of delayed administration of antiprogestin to antagonize progestin-induced increases in both cyclin D1 mRNA and the proportion of cells in S phase support a central role for cyclin D1 in mediating the mitogenic response in T-47D cells. Compatible with this hypothesis, antiestrogen treatment reduced the expression of cyclin D1 approximately 8 h before changes in cell cycle phase distribution accompanying growth inhibition. In the absence of progestin, antiprogestin treatment inhibited T-47D cell cycle progression but in contrast did not decrease cyclin D1 expression. Thus, changes in cyclin D1 gene expression are often, but not invariably, associated with changes in the rate of T-47D breast cancer cell cycle progression. However, both antiestrogen and antiprogestin depleted c-myc mRNA by > 80% within 2 h. These data suggest the involvement of both cyclin D1 and c-myc in the steroidal control of breast cancer cell cycle progression.


Molecular and Cellular Biology | 1998

c-Myc or Cyclin D1 Mimics Estrogen Effects on Cyclin E-Cdk2 Activation and Cell Cycle Reentry

Owen W. J. Prall; Eileen M. Rogan; Elizabeth A. Musgrove; Colin K. W. Watts; Robert L. Sutherland

ABSTRACT Estrogen-induced progression through G1 phase of the cell cycle is preceded by increased expression of the G1-phase regulatory proteins c-Myc and cyclin D1. To investigate the potential contribution of these proteins to estrogen action, we derived clonal MCF-7 breast cancer cell lines in which c-Myc or cyclin D1 was expressed under the control of the metal-inducible metallothionein promoter. Inducible expression of either c-Myc or cyclin D1 was sufficient for S-phase entry in cells previously arrested in G1 phase by pretreatment with ICI 182780, a potent estrogen antagonist. c-Myc expression was not accompanied by increased cyclin D1 expression or Cdk4 activation, nor was cyclin D1 induction accompanied by increases in c-Myc. Expression of c-Myc or cyclin D1 was sufficient to activate cyclin E-Cdk2 by promoting the formation of high-molecular-weight complexes lacking the cyclin-dependent kinase inhibitor p21, as has been described, following estrogen treatment. Interestingly, this was accompanied by an association between active cyclin E-Cdk2 complexes and hyperphosphorylated p130, identifying a previously undefined role for p130 in estrogen action. These data provide evidence for distinct c-Myc and cyclin D1 pathways in estrogen-induced mitogenesis which converge on or prior to the formation of active cyclin E-Cdk2-p130 complexes and loss of inactive cyclin E-Cdk2-p21 complexes, indicating a physiologically relevant role for the cyclin E binding motifs shared by p130 and p21.


Oncogene | 2001

Lycopene inhibition of cell cycle progression in breast and endometrial cancer cells is associated with reduction in cyclin D levels and retention of p27(Kip1) in the cyclin E-cdk2 complexes.

Amit Nahum; Keren Hirsch; Michael Danilenko; Colin K. W. Watts; Owen W. J. Prall; Joseph Levy; Yoav Sharoni

Numerous studies have demonstrated the anticancer activity of the tomato carotenoid, lycopene. However, the molecular mechanism of this action remains unknown. Lycopene inhibition of human breast and endometrial cancer cell growth is associated with inhibition of cell cycle progression at the G1 phase. In this study we determined the lycopene-mediated changes in the cell cycle machinery. Cells synchronized in the G1 phase by serum deprivation were treated with lycopene or vehicle and restimulated with 5% serum. Lycopene treatment decreased serum-induced phosphorylation of the retinoblastoma protein and related pocket proteins. This effect was associated with reduced cyclin-dependent kinase (cdk4 and cdk2) activities with no alterations in CDK protein levels. Lycopene caused a decrease in cyclin D1 and D3 levels whereas cyclin E levels did not change. The CDK inhibitor p21Cip1/Waf1 abundance was reduced while p27Kip1 levels were unaltered in comparison to control cells. Serum stimulation of control cells resulted in reduction in the p27 content in the cyclin E–cdk2 complex and its accumulation in the cyclin D1–cdk4 complex. This change in distribution was largely prevented by lycopene treatment. These results suggest that lycopene inhibits cell cycle progression via reduction of the cyclin D level and retention of p27 in cyclin E–cdk2, thus leading to inhibition of G1 CDK activities.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Estrogen inhibits GH signaling by suppressing GH-induced JAK2 phosphorylation, an effect mediated by SOCS-2

Kin-Chuen Leung; Nathan Doyle; M Ballesteros; Klara Sjögren; Colin K. W. Watts; T H Low; Gary M. Leong; Richard Ross; K. K. Y. Ho

Oral estrogen administration attenuates the metabolic action of growth hormone (GH) in humans. To investigate the mechanism involved, we studied the effects of estrogen on GH signaling through Janus kinase (JAK)2 and the signal transducers and activators of transcription (STATs) in HEK293 cells stably expressing the GH receptor (293GHR), HuH7 (hepatoma) and T-47D (breast cancer) cells. 293GHR cells were transiently transfected with an estrogen receptor-α expression plasmid and luciferase reporters with binding elements for STAT3 and STAT5 or the β-casein promoter. GH stimulated the reporter activities by four- to sixfold. Cotreatment with 17β-estradiol (E2) resulted in a dose-dependent reduction in the response of all three reporters to GH to a maximum of 49–66% of control at 100 nM (P < 0.05). No reduction was seen when E2 was added 1–2 h after GH treatment. Similar inhibitory effects were observed in HuH7 and T-47D cells. E2 suppressed GH-induced JAK2 phosphorylation, an effect attenuated by actinomycin D, suggesting a requirement for gene expression. Next, we investigated the role of the suppressors of cytokine signaling (SOCS) in E2 inhibition. E2 increased the mRNA abundance of SOCS-2 but not SOCS-1 and SOCS-3 in HEK293 cells. The inhibitory effect of E2 was absent in cells lacking SOCS-2 but not in those lacking SOCS-1 and SOCS-3. In conclusion, estrogen inhibits GH signaling, an action mediated by SOCS-2. This paper provides evidence for regulatory interaction between a sex steroid and the GH/JAK/STAT pathway, in which SOCS-2 plays a central mechanistic role.


Journal of Biological Chemistry | 2003

Multistep Autoactivation of Asparaginyl Endopeptidase in Vitro and in Vivo

Dongtao Ni Li; Stephen P. Matthews; Antony N. Antoniou; Daniela Mazzeo; Colin K. W. Watts

Mammalian asparaginyl endopeptidase (AEP) or legumain is a recently discovered lysosomal cysteine protease that specifically cleaves after asparagine residues. How this unusually specific lysosomal protease is itself activated is not fully understood. Using purified recombinant pro-enzyme, we show that activation is autocatalytic, requires sequential removal of C- and N-terminal pro-peptides at different pH thresholds, and is bimolecular. Removal of the N-terminal propeptide requires cleavage after aspartic acid rather than asparagine. Cellular processing, either of exogenously added AEP precursor or of pulse-labeled endogenous precursor, introduces at least one further cleavage to yield the final mature lysosomal enzyme. We also provide evidence that in living cells, there is clear compartmental heterogeneity in terms of AEP activation status. Moreover, we show that human monocyte-derived dendritic cells harbor inactive proforms of AEP that become activated upon maturation of dendritic cells with lipopolysaccharide.


Journal of Mammary Gland Biology and Neoplasia | 1998

Estrogen and progestin regulation of cell cycle progression.

Robert L. Sutherland; Owen W. J. Prall; Colin K. W. Watts; Elizabeth A. Musgrove

Estrogens and progesterone, acting via theirspecific nuclear receptors, are essential for normalmammary gland development and differentiated function.The molecular mechanisms through which these effects are mediated are not well defined, althoughsignificant recent progress has been made in linkingsteroid hormone action to cell cycle progression. Thisreview summarizes data identifying c-myc and cyclin D1 as major downstream targets of bothestrogenand progestin-stimulated cell cycle progressionin human breast cancer cells. Additionally, estrogeninduces the formation of high specific activity forms of the cyclin E-Cdk2 enzyme complex lacking thecyclin-dependent kinase (CDK)3 inhibitor, p21. Thedelayed growth inhibitory effects of progestins, whichare likely to be prerequisites for manifestation of their function in differentiation, alsoinvolve decreases in cyclin D1 and E gene expression andrecruitment of CDK inhibitors into cyclin D1-Cdk4 andcyclin E-Cdk2 complexes. Thus estrogens and progestins affect CDK function not only by effects oncyclin abundance but also by regulating the recruitmentof CDK inhibitors and, as yet undefined, additionalcomponents which determine the activity of the CDK complexes. These effects of estrogens andprogestins are likely to be major contributors to theirregulation of mammary epithelial cell proliferation anddifferentiation.


Breast Cancer Research and Treatment | 1994

Antiestrogen regulation of cell cycle progression and cyclin D1 gene expression in MCF-7 human breast cancer cells.

Colin K. W. Watts; Kimberley J. E. Sweeney; Andrea Warlters; Elizabeth A. Musgrove; Robert L. Sutherland

The molecular mechanisms by which antiestrogens inhibit breast cancer cell proliferation are not well understood. Using cultured breast cancer cell lines, we studied the effects of antiestrogens on proliferation and cell cycle progression and used this information to select candidate cell cycle regulatory genes that are potential targets for antiestrogens. Under estrogen- and serum-free conditions antiestrogens inhibited proliferation of MCF-7 cells stimulated with insulin. Cells were blocked at a point in G1 phase. These effects are comparable with those in serum- and estrogen-containing medium and were also seen to a lesser degree in nude mice bearing MCF-7 tumors. Similar observations with other peptide mitogens suggest that the process inhibited by antiestrogens is common to estrogen and growth factor activated pathways. Other studies have identified G1 cyclins as potential targets for growth factor and steroid hormone/steroid antagonist regulation of breast epithelial cell proliferation. In MCF-7 cells growing in the presence of fetal calf serum, cyclin D1 mRNA was rapidly down-regulated by steroidal and nonsteroidal antiestrogens by an apparently estrogen receptor mediated mechanism. Cyclin D1 gene expression was maximally inhibited before effects on entry into S phase and inhibition was therefore not merely a consequence of changes in cell cycle progression. Together with data on the effects of antiestrogens in serum-free conditions [1], these results suggest down-regulation of cyclin D1 by antiestrogens may be a general phenomenon in estrogen receptor-positive breast cancer cells, independent of culture conditions and class of antiestrogen. These observations are compatible with the hypothesis that reductions in cyclin D1 levels may mediate in part the action of antiestrogens in blocking entry of cells into S phase.


Oncogene | 1998

Identification of a human HECT family protein with homology to the Drosophila tumor suppressor gene hyperplastic discs.

Michelle J. Callaghan; Amanda J. Russell; Erica Woollatt; Grant R. Sutherland; Robert L. Sutherland; Colin K. W. Watts

Use of the differential display technique to isolate progestin-regulated genes in T-47D human breast cancer cells led to identification of a novel gene, EDD. The cDNA sequence contains a 2799 amino acid open reading frame sharing 40% identity with the predicted 2894 amino acid product of the Drosophila melanogaster tumor suppressor gene hyperplastic discs, while the carboxy-terminal 889 amino acids show 96% identity to a rat 100 kDa HECT domain protein. EDD mRNA was progestin-induced in T-47D cells and was highly abundant in testes and expressed at moderately high levels in other tissues, suggesting a broad role for EDD. Anti-EDD antibodies immunoprecipitated an approximately 300 kDa protein from T-47D cell lysates. HECT family proteins function as E3 ubiquitin-protein ligases, targeting specific proteins for ubiquitin-mediated proteolysis. EDD is likely to function as an E3 as in vitro translated protein bound ubiquitin reversibly through a conserved HECT domain cysteine residue. EDD was localized by FISH to chromosome 8q22, a locus disrupted in a variety of cancers. Given the homology between EDD and the hyperplastic discs protein, which is required for control of imaginal disc growth in Drosophila, EDD potentially has a role in regulation of cell proliferation or differentiation.


Journal of Biological Chemistry | 2006

Cystatin M/E Is a High Affinity Inhibitor of Cathepsin V and Cathepsin L by a Reactive Site That Is Distinct from the Legumain-binding Site A NOVEL CLUE FOR THE ROLE OF CYSTATIN M/E IN EPIDERMAL CORNIFICATION

Tsing Cheng; Kiyotaka Hitomi; Ivonne M.J.J. van Vlijmen-Willems; Gys J. de Jongh; Kanae Yamamoto; Koji Nishi; Colin K. W. Watts; Thomas Reinheckel; Joost Schalkwijk; Patrick L.J.M. Zeeuwen

Cystatin M/E is a high affinity inhibitor of the asparaginyl endopeptidase legumain, and we have previously reported that both proteins are likely to be involved in the regulation of stratum corneum formation in skin. Although cystatin M/E contains a predicted binding site for papain-like cysteine proteases, no high affinity binding for any member of this family has been demonstrated so far. We report that human cathepsin V (CTSV) and human cathepsin L (CTSL) are strongly inhibited by human cystatin M/E. Kinetic studies show that Ki values of cystatin M/E for the interaction with CTSV and CTSL are 0.47 and 1.78 nm, respectively. On the basis of the analogous sites in cystatin C, we used site-directed mutagenesis to identify the binding sites of these proteases in cystatin M/E. We found that the W135A mutant was rendered inactive against CTSV and CTSL but retained legumain-inhibiting activity. Conversely, the N64A mutant lost legumain-inhibiting activity but remained active against the papain-like cysteine proteases. We conclude that legumain and papain-like cysteine proteases are inhibited by two distinct non-overlapping sites. Using immunohistochemistry on normal human skin, we found that cystatin M/E co-localizes with CTSV and CTSL. In addition, we show that CTSL is the elusive enzyme that processes and activates epidermal transglutaminase 3. The identification of CTSV and CTSL as novel targets for cystatin M/E, their (co)-expression in the stratum granulosum of human skin, and the activity of CTSL toward transglutaminase 3 strongly imply an important role for these enzymes in the differentiation process of human epidermis.


Oncogene | 2003

EDD, the human orthologue of the hyperplastic discs tumour suppressor gene, is amplified and overexpressed in cancer.

Jennifer L. Clancy; Michelle J. Henderson; Amanda J. Russell; David W. Anderson; Ronaldo J. Bova; Ian G. Campbell; David Y. H. Choong; Graeme A. Macdonald; Graham J. Mann; Tania Nolan; Ged Brady; Olufunmilayo I. Olopade; Erica Woollatt; Michael J. Davies; Davendra Segara; Neville F. Hacker; Susan M. Henshall; Robert L. Sutherland; Colin K. W. Watts

EDD (E3 isolated by differential display), located at chromosome 8q22.3, is the human orthologue of the Drosophila melanogaster tumour suppressor gene ‘hyperplastic discs’ and encodes a HECT domain E3 ubiquitin protein-ligase. To investigate the possible involvement of EDD in human cancer, several cancers from diverse tissue sites were analysed for allelic gain or loss (allelic imbalance, AI) at the EDD locus using an EDD-specific microsatellite, CEDD, and other polymorphic microsatellites mapped in the vicinity of the 8q22.3 locus. Of 143 cancers studied, 38 had AI at CEDD (42% of 90 informative cases). In 14 of these cases, discrete regions of imbalance encompassing 8q22.3 were present, while the remainder had more extensive 8q aberrations. AI of CEDD was most frequent in ovarian cancer (22/47 informative cases, 47%), particularly in the serous subtype (16/22, 73%), but was rare in benign and borderline ovarian tumours. AI was also common in breast cancer (31%), hepatocellular carcinoma (46%), squamous cell carcinoma of the tongue (50%) and metastatic melanoma (18%). AI is likely to represent amplification of the EDD gene locus rather than loss of heterozygosity, as quantitative RT–PCR and immunohistochemistry showed that EDD mRNA and protein are frequently overexpressed in breast and ovarian cancers, while among breast cancer cell lines EDD overexpression and increased gene copy number were correlated. These results demonstrate that AI at the EDD locus is common in a diversity of carcinomas and that the EDD gene is frequently overexpressed in breast and ovarian cancer, implying a potential role in cancer progression.

Collaboration


Dive into the Colin K. W. Watts's collaboration.

Top Co-Authors

Avatar

Robert L. Sutherland

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Musgrove

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Michelle J. Henderson

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Darren N. Saunders

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Owen W. J. Prall

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Jennifer L. Clancy

Australian National University

View shared research outputs
Top Co-Authors

Avatar

Jenny A. Hamilton

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Kimberley J. E. Sweeney

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Amanda J. Russell

Garvan Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Susan M. Henshall

Garvan Institute of Medical Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge