Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin M. Dundas is active.

Publication


Featured researches published by Colin M. Dundas.


Science | 2011

Seasonal Flows on Warm Martian Slopes

Alfred S. McEwen; Lujendra Ojha; Colin M. Dundas; Sarah S. Mattson; Shane Byrne; James J. Wray; Selby C. Cull; Scott L. Murchie; Nicolas Thomas; V. C. Gulick

Rare meter-scale slope features on Mars might be explained by transient flows of liquid salty water. Water probably flowed across ancient Mars, but whether it ever exists as a liquid on the surface today remains debatable. Recurring slope lineae (RSL) are narrow (0.5 to 5 meters), relatively dark markings on steep (25° to 40°) slopes; repeat images from the Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment show them to appear and incrementally grow during warm seasons and fade in cold seasons. They extend downslope from bedrock outcrops, often associated with small channels, and hundreds of them form in some rare locations. RSL appear and lengthen in the late southern spring and summer from 48°S to 32°S latitudes favoring equator-facing slopes, which are times and places with peak surface temperatures from ~250 to 300 kelvin. Liquid brines near the surface might explain this activity, but the exact mechanism and source of water are not understood.


Science | 2009

Distribution of Mid-Latitude Ground Ice on Mars from New Impact Craters

Shane Byrne; Colin M. Dundas; Megan R. Kennedy; Michael T. Mellon; Alfred S. McEwen; Selby C. Cull; Ingrid Daubar; David E. Shean; Kimberly D. Seelos; Scott L. Murchie; Bruce A. Cantor; Raymond E. Arvidson; Kenneth S. Edgett; A. Reufer; Nicolas Thomas; Tanya N. Harrison; Liliya V. Posiolova; F. P. Seelos

Martian Impact Impact craters form frequently on Mars, exposing material that would otherwise remain hidden below the surface. Byrne et al. (p. 1674) identified mid-latitude craters that formed over the last few years, imaged them in great detail with a camera on board the Mars Reconnaissance Orbiter, and monitored subsequent changes. The craters excavated buried water ice, which was later seen sublimating away. In addition, some craters might have excavated completely through the ice. The observations are consistent with models and other observations that suggest water ice should be stable decimeters to about 1 meter below the martian surface at latitudes poleward of about 40°; and suggest that, in the recent past, Mars had a wetter atmosphere than at present. Observations of ground ice exposed by recent impact craters probe the composition of the upper layers of the surface of Mars. New impact craters at five sites in the martian mid-latitudes excavated material from depths of decimeters that has a brightness and color indicative of water ice. Near-infrared spectra of the largest example confirm this composition, and repeated imaging showed fading over several months, as expected for sublimating ice. Thermal models of one site show that millimeters of sublimation occurred during this fading period, indicating clean ice rather than ice in soil pores. Our derived ice-table depths are consistent with models using higher long-term average atmospheric water vapor content than present values. Craters at most of these sites may have excavated completely through this clean ice, probing the ice table to previously unsampled depths of meters and revealing substantial heterogeneity in the vertical distribution of the ice itself.


Science | 2007

A Closer Look at Water-Related Geologic Activity on Mars

Alfred S. McEwen; Carl J. Hansen; W. A. Delamere; Eric M. Eliason; Kenneth E. Herkenhoff; Laszlo P. Keszthelyi; V. C. Gulick; R. L. Kirk; Michael T. Mellon; John A. Grant; Nicolas Thomas; Catherine M. Weitz; Steven W. Squyres; Nathan T. Bridges; Scott L. Murchie; F. P. Seelos; Kimberly D. Seelos; Chris H. Okubo; Moses Pollen Milazzo; Livio L. Tornabene; Windy L. Jaeger; Shane Byrne; Patrick Russell; J. L. Griffes; Sara Martínez-Alonso; A. Davatzes; Frank C. Chuang; B. J. Thomson; Kathryn Elspeth Fishbaugh; Colin M. Dundas

Water has supposedly marked the surface of Mars and produced characteristic landforms. To understand the history of water on Mars, we take a close look at key locations with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter, reaching fine spatial scales of 25 to 32 centimeters per pixel. Boulders ranging up to ∼2 meters in diameter are ubiquitous in the middle to high latitudes, which include deposits previously interpreted as finegrained ocean sediments or dusty snow. Bright gully deposits identify six locations with very recent activity, but these lie on steep (20° to 35°) slopes where dry mass wasting could occur. Thus, we cannot confirm the reality of ancient oceans or water in active gullies but do see evidence of fluvial modification of geologically recent mid-latitude gullies and equatorial impact craters.


Journal of Geophysical Research | 2011

Columbus crater and other possible groundwater‐fed paleolakes of Terra Sirenum, Mars

James J. Wray; Ralph E. Milliken; Colin M. Dundas; Gregg A. Swayze; Jeffrey C. Andrews-Hanna; Alice M. Baldridge; M. Chojnacki; Janice L. Bishop; B. L. Ehlmann; Scott L. Murchie; Roger N. Clark; F. P. Seelos; Livio L. Tornabene; Steven W. Squyres

Columbus crater in the Terra Sirenum region of the Martian southern highlands contains light-toned layered deposits with interbedded sulfate and phyllosilicate minerals, a rare occurrence on Mars. Here we investigate in detail the morphology, thermophysical properties, mineralogy, and stratigraphy of these deposits; explore their regional context; and interpret the craters aqueous history. Hydrated mineral-bearing deposits occupy a discrete ring around the walls of Columbus crater and are also exposed beneath younger materials, possibly lava flows, on its floor. Widespread minerals identified in the crater include gypsum, polyhydrated and monohydrated Mg/Fe-sulfates, and kaolinite; localized deposits consistent with montmorillonite, Fe/Mg-phyllosilicates, jarosite, alunite, and crystalline ferric oxide or hydroxide are also detected. Thermal emission spectra suggest abundances of these minerals in the tens of percent range. Other craters in northwest Terra Sirenum also contain layered deposits and Al/Fe/Mg-phyllosilicates, but sulfates have so far been found only in Columbus and Cross craters. The regions intercrater plains contain scattered exposures of Al-phyllosilicates and one isolated mound with opaline silica, in addition to more common Fe/Mg-phyllosilicates with chlorides. A Late Noachian age is estimated for the aqueous deposits in Columbus, coinciding with a period of inferred groundwater upwelling and evaporation, which (according to model results reported here) could have formed evaporites in Columbus and other craters in Terra Sirenum. Hypotheses for the origin of these deposits include groundwater cementation of crater-filling sediments and/or direct precipitation from subaerial springs or in a deep (∼900 m) paleolake. Especially under the deep lake scenario, which we prefer, chemical gradients in Columbus crater may have created a habitable environment at this location on early Mars.


Science | 2007

Athabasca Valles, Mars: A Lava-Draped Channel System

Windy L. Jaeger; Laszlo P. Keszthelyi; Alfred S. McEwen; Colin M. Dundas; Patrick Russell

Athabasca Valles is a young outflow channel system on Mars that may have been carved by catastrophic water floods. However, images acquired by the High-Resolution Imaging Science Experiment camera onboard the Mars Reconnaissance Orbiter spacecraft reveal that Athabasca Valles is now entirely draped by a thin layer of solidified lava—the remnant of a once-swollen river of molten rock. The lava erupted from a fissure, inundated the channels, and drained downstream in geologically recent times. Purported ice features in Athabasca Valles and its distal basin, Cerberus Palus, are actually composed of this lava. Similar volcanic processes may have operated in other ostensibly fluvial channels, which could explain in part why the landers sent to investigate sites of ancient flooding on Mars have predominantly found lava at the surface instead.


Science | 2011

Seasonal Erosion and Restoration of Mars’ Northern Polar Dunes

Carl J. Hansen; Mary C. Bourke; Nathan T. Bridges; Shane Byrne; C. M. Colon; Serina Diniega; Colin M. Dundas; K. E. Herkenhoff; Alfred S. McEwen; Michael T. Mellon; G. Portyankina; Nicolas Thomas

High-resolution images of Mars show active sand transport on northern polar dunes. Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars’ CO2 seasonal polar caps. Numerous dunes in Mars’ north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars’ current climate.


Geology | 2010

Seasonality of present-day Martian dune-gully activity

Serina Diniega; Shane Byrne; Nathan T. Bridges; Colin M. Dundas; Alfred S. McEwen

Martian slope gullies are argued to be evidence for recent liquid water flow on the surface of Mars. To explain the source of water, a wide range of environmental conditions and processes has been invoked. However, a lack of information about the environmental context or timing of gully activity makes it difficult to evaluate the theories. Here, we present new observations of extensive gully modification over the past 6 Mars years within dune gullies with slope-gully morphology. Observed activity within 18 gullies in 7 dune fields constrains timing to winter, which is consistent with observed slope-gully activity. These observations show that fluvial processes are unlikely to cause present-day Martian dune-gully activity, and imply that CO 2 frost accumulation may play the dominant role.


Journal of Geophysical Research | 2010

Crater population and resurfacing of the Martian north polar layered deposits

Maria E. Banks; Shane Byrne; Kapil Galla; Alfred S. McEwen; Veronica J. Bray; Colin M. Dundas; Kathryn Elspeth Fishbaugh; Kenneth E. Herkenhoff; Bruce C. Murray

Present-day accumulation in the north polar layered deposits (NPLD) is thought to occur via deposition on the north polar residual cap. Understanding current mass balance in relation to current climate would provide insight into the climatic record of the NPLD. To constrain processes and rates of NPLD resurfacing, a search for craters was conducted using images from the Mars Reconnaissance Orbiter Context Camera. One hundred thirty craters have been identified on the NPLD, 95 of which are located within a region defined to represent recent accumulation. High Resolution Imaging Science Experiment images of craters in this region reveal a morphological sequence of crater degradation that provides a qualitative understanding of processes involved in crater removal. A classification system for these craters was developed based on the amount of apparent degradation and infilling and where possible depth/diameter ratios were determined. The temporal and spatial distribution of crater degradation is interpreted to be close to uniform. Through comparison of the size-frequency distribution of these craters with the expected production function, the craters are interpreted to be an equilibrium population with a crater of diameter D meters having a lifetime of ~30.75D^(1.14) years. Accumulation rates within these craters are estimated at 7.2D^(−0.14) mm/yr, which corresponds to values of ~3–4 mm/yr and are much higher than rates thought to apply to the surrounding flat terrain. The current crater population is estimated to have accumulated in the last ~20 kyr or less.


Journal of Geophysical Research | 2014

HiRISE observations of new impact craters exposing Martian ground ice

Colin M. Dundas; Shane Byrne; Alfred S. McEwen; Michael T. Mellon; Megan R. Kennedy; Ingrid Daubar; Lee Saper

Twenty small new impact craters or clusters have been observed to excavate bright material inferred to be ice at mid-latitudes and high latitudes on Mars. In the northern hemisphere, the craters are widely distributed geographically and occur at latitudes as low as 39°N. Stability modeling suggests that this ice distribution requires a long-term average atmospheric water vapor content around 25 precipitable micrometers, more than double the present value, which is consistent with the expected effect of recent orbital variations. Alternatively, near-surface humidity could be higher than expected for current column abundances if water vapor is not well mixed with atmospheric CO2, or the vapor pressure at the ice table could be lower due to salts. Ice in and around the craters remains visibly bright for months to years, indicating that it is clean ice rather than ice-cemented regolith. Although some clean ice may be produced by the impact process, it is likely that the original ground ice was excess ice (exceeding dry soil pore space) in many cases. Observations of the craters suggest small-scale heterogeneities in this excess ice. The origin of such ice is uncertain. Ice lens formation by migration of thin films of liquid is most consistent with local heterogeneity in ice content and common surface boulders, but in some cases, nearby thermokarst landforms suggest large amounts of excess ice that may be best explained by a degraded ice sheet.


Science | 2008

Response to Comment on "Athabasca Valles, Mars: A Lava-Draped Channel System"

Windy L. Jaeger; Laszlo P. Keszthelyi; Alfred S. McEwen; Timothy N. Titus; Colin M. Dundas; Patrick Russell

The recent geologic history of Athabasca Valles, Mars, is controversial. Some studies report ice-rich sediment in its channels, whereas others find only lava. Data from the High-Resolution Imaging Science Experiment camera now confirm that, although certain features exhibit a superficial similarity to ice-related landforms, solidified lava coats the entire channel system.

Collaboration


Dive into the Colin M. Dundas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laszlo P. Keszthelyi

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Serina Diniega

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Nathan T. Bridges

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

James J. Wray

Georgia Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Michael T. Mellon

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ingrid Daubar

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Scott L. Murchie

Johns Hopkins University Applied Physics Laboratory

View shared research outputs
Top Co-Authors

Avatar

Windy L. Jaeger

United States Geological Survey

View shared research outputs
Researchain Logo
Decentralizing Knowledge