Nathan T. Bridges
Johns Hopkins University Applied Physics Laboratory
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Nathan T. Bridges.
Journal of Geophysical Research | 2000
James F. Bell; Harry Y. McSween; Joy A. Crisp; Richard V. Morris; Scott L. Murchie; Nathan T. Bridges; James Richard Johnson; Daniel T. Britt; M. P. Golombek; Henry J. Moore; Anupam Ghosh; Janice L. Bishop; Robert C. Anderson; J. Brückner; T. Economou; J. P. Greenwood; Haraldur Pall Gunnlaugsson; R. M. Hargraves; S. F. Hviid; J. M. Knudsen; M. B. Madsen; Richard J. Reid; R. Rieder; L. A. Soderblom
Mars Pathfinder obtained multispectral, elemental, magnetic, and physical measurements of soil and dust at the Sagan Memorial Station during the course of its 83 sol mission. We describe initial results from these measurements, concentrating on multispectral and elemental data, and use these data, along with previous Viking, SNC meteorite, and telescopic results, to help constrain the origin and evolution of Martian soil and dust. We find that soils and dust can be divided into at least eight distinct spectral units, based on parameterization of Imager for Mars Pathfinder (IMP) 400 to 1000 nm multispectral images. The most distinctive spectral parameters for soils and dust are the reflectivity in the red, the red/blue reflectivity ratio, the near-IR spectral slope, and the strength of the 800 to 1000 nm absorption feature. Most of the Pathfinder spectra are consistent with the presence of poorly crystalline or nanophase ferric oxide(s), sometimes mixed with small but varying degrees of well-crystalline ferric and ferrous phases. Darker soil units appear to be coarser-grained, compacted, and/or mixed with a larger amount of dark ferrous materials relative to bright soils. Nanophase goethite, akaganeite, schwertmannite, and maghemite are leading candidates for the origin of the absorption centered near 900 nm in IMP spectra. The ferrous component in the soil cannot be well-constrained based on IMP data. Alpha proton X-ray spectrometer (APXS) measurements of six soil units show little variability within the landing site and show remarkable overall similarity to the average Viking-derived soil elemental composition. Differences exist between Viking and Pathfinder soils, however, including significantly higher S and Cl abundances and lower Si abundances in Viking soils and the lack of a correlation between Ti and Fe in Pathfinder soils. No significant linear correlations were observed between IMP spectral properties and APXS elemental chemistry. Attempts at constraining the mineralogy of soils and dust using normative calculations involving mixtures of smectites and silicate and oxide minerals did not yield physically acceptable solutions. We attempted to use the Pathfinder results to constrain a number of putative soil and dust formation scenarios, including palagonitization and acid-fog weathering. While the Pathfinder soils cannot be chemically linked to the Pathfinder rocks by palagonitization, this study and McSween et al. [1999] suggest that palagonitic alteration of a Martian basaltic rock, plus mixture with a minor component of locally derived andesitic rock fragments, could be consistent with the observed soil APXS and IMP properties.
Science | 2013
David F. Blake; Richard V. Morris; Gary Kocurek; Shaunna M. Morrison; Robert T. Downs; David L. Bish; Douglas W. Ming; Kenneth S. Edgett; David M. Rubin; W. Goetz; M. B. Madsen; R. Sullivan; R. Gellert; I. Campbell; Allan H. Treiman; Scott M. McLennan; Albert S. Yen; John P. Grotzinger; D. T. Vaniman; S. J. Chipera; C. N. Achilles; E. B. Rampe; Dawn Y. Sumner; P.-Y. Meslin; Sylvestre Maurice; O. Forni; O. Gasnault; Martin R. Fisk; M. Schmidt; Paul R. Mahaffy
The Rocknest aeolian deposit is similar to aeolian features analyzed by the Mars Exploration Rovers (MERs) Spirit and Opportunity. The fraction of sand <150 micrometers in size contains ~55% crystalline material consistent with a basaltic heritage and ~45% x-ray amorphous material. The amorphous component of Rocknest is iron-rich and silicon-poor and is the host of the volatiles (water, oxygen, sulfur dioxide, carbon dioxide, and chlorine) detected by the Sample Analysis at Mars instrument and of the fine-grained nanophase oxide component first described from basaltic soils analyzed by MERs. The similarity between soils and aeolian materials analyzed at Gusev Crater, Meridiani Planum, and Gale Crater implies locally sourced, globally similar basaltic materials or globally and regionally sourced basaltic components deposited locally at all three locations.
Science | 2013
P.-Y. Meslin; O. Gasnault; Olivier Forni; S. Schröder; A. Cousin; G. Berger; S. M. Clegg; J. Lasue; S. Maurice; Violaine Sautter; S. Le Mouélic; Roger C. Wiens; C. Fabre; W. Goetz; David L. Bish; Nicolas Mangold; Bethany L. Ehlmann; N. Lanza; A.-M. Harri; R. B. Anderson; E. B. Rampe; Timothy H. McConnochie; P. Pinet; Diana L. Blaney; R. Leveille; D. Archer; B. L. Barraclough; Steve Bender; D. Blake; Jennifer G. Blank
The ChemCam instrument, which provides insight into martian soil chemistry at the submillimeter scale, identified two principal soil types along the Curiosity rover traverse: a fine-grained mafic type and a locally derived, coarse-grained felsic type. The mafic soil component is representative of widespread martian soils and is similar in composition to the martian dust. It possesses a ubiquitous hydrogen signature in ChemCam spectra, corresponding to the hydration of the amorphous phases found in the soil by the CheMin instrument. This hydration likely accounts for an important fraction of the global hydration of the surface seen by previous orbital measurements. ChemCam analyses did not reveal any significant exchange of water vapor between the regolith and the atmosphere. These observations provide constraints on the nature of the amorphous phases and their hydration.
Science | 2011
Carl J. Hansen; Mary C. Bourke; Nathan T. Bridges; Shane Byrne; C. M. Colon; Serina Diniega; Colin M. Dundas; K. E. Herkenhoff; Alfred S. McEwen; Michael T. Mellon; G. Portyankina; Nicolas Thomas
High-resolution images of Mars show active sand transport on northern polar dunes. Despite radically different environmental conditions, terrestrial and martian dunes bear a strong resemblance, indicating that the basic processes of saltation and grainfall (sand avalanching down the dune slipface) operate on both worlds. Here, we show that martian dunes are subject to an additional modification process not found on Earth: springtime sublimation of Mars’ CO2 seasonal polar caps. Numerous dunes in Mars’ north polar region have experienced morphological changes within a Mars year, detected in images acquired by the High-Resolution Imaging Science Experiment on the Mars Reconnaissance Orbiter. Dunes show new alcoves, gullies, and dune apron extension. This is followed by remobilization of the fresh deposits by the wind, forming ripples and erasing gullies. The widespread nature of these rapid changes, and the pristine appearance of most dunes in the area, implicates active sand transport in the vast polar erg in Mars’ current climate.
Geophysical Research Letters | 2010
S. Silvestro; Lori K. Fenton; D. A. Vaz; Nathan T. Bridges; G. G. Ori
[1]xa0In this report we show evidence of widespread ripple migration over the stoss side of dark barchan dunes in Nili Patera on Mars. The measured average migration of ∼1.7 meters in less than 4 terrestrial months clearly indicates that active sand saltation is occurring in the study area. In addition, we document widespread changes in the dune base-ground surface contact and in the slip face structures, showing that not only the ripples, but the whole dunes are actually migrating in the present-day atmospheric setting. These results provide unequivocal evidence of recent aeolian activity and suggest that other dunes and ripples on Mars may also be active.
Geology | 2012
Nathan T. Bridges; Mary C. Bourke; Paul E. Geissler; Maria E. Banks; Cindy Colon; Serina Diniega; Matthew P. Golombek; Candice J. Hansen; Sarah S. Mattson; Alfred S. McEwen; Michael T. Mellon; N. W. Stantzos; B. J. Thomson
Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains.
Journal of Geophysical Research | 2010
M. P. Golombek; K. Robinson; Alfred S. McEwen; Nathan T. Bridges; Boris A. Ivanov; Livio L. Tornabene; R. Sullivan
[1]xa0Observations of fresh impact craters by the Opportunity rover and in high-resolution orbital images constrain the latest phase of granule ripple migration at Meridiani Planum to have occurred between ∼50 ka and ∼200 ka. Opportunity explored the fresh Resolution crater cluster and Concepcion crater that are superposed on and thus younger than the ripples. These fresh craters have small dark pebbles scattered across their surfaces, which are most likely fragments of the impactor, suggesting that the dark pebbles and cobbles observed by Opportunity at Meridiani Planum are a lag of impactor-derived material (either meteoritic or secondary impactors from elsewhere on Mars). Two larger, fresh-rayed craters in Meridiani Planum bracket ripple migration; secondaries from Ada crater are clearly superposed on and secondaries from an unnamed 0.84 km diameter crater have been modified and overprinted by the ripples. Three methods were used to estimate the age of these craters and thus when the latest phase of ripple migration occurred. The inactivity of the ripples over the past ∼50 ka at Meridiani is also consistent with other evidence for the stability of the ripples, the lack of observed eolian bed forms in craters that formed in the past 20 years, and little evidence for much dune motion in the past 30 yr on Mars. Observations of crater morphology and their interaction with the ripples allow the development of a general time scale for craters in Meridiani Planum over the past million years.
Science | 2016
Mathieu G.A. Lapotre; Ryan C. Ewing; Michael P. Lamb; Woodward W. Fischer; John P. Grotzinger; David M. Rubin; Kevin W. Lewis; M Ballard; Mitch D. Day; Sanjeev Gupta; Steven G. Banham; Nathan T. Bridges; D. J. Des Marais; A. A. Fraeman; J. A. Grant; Kenneth E. Herkenhoff; Douglas W. Ming; Michael A. Mischna; Melissa S. Rice; D A Sumner; Ashwin R. Vasavada; R. A. Yingst
Wind blowing over sand on Earth produces decimeter-wavelength ripples and hundred-meter– to kilometer-wavelength dunes: bedforms of two distinct size modes. Observations from the Mars Science Laboratory Curiosity rover and the Mars Reconnaissance Orbiter reveal that Mars hosts a third stable wind-driven bedform, with meter-scale wavelengths. These bedforms are spatially uniform in size and typically have asymmetric profiles with angle-of-repose lee slopes and sinuous crest lines, making them unlike terrestrial wind ripples. Rather, these structures resemble fluid-drag ripples, which on Earth include water-worked current ripples, but on Mars instead form by wind because of the higher kinematic viscosity of the low-density atmosphere. A reevaluation of the wind-deposited strata in the Burns formation (about 3.7 billion years old or younger) identifies potential wind-drag ripple stratification formed under a thin atmosphere.
Geology | 2010
Serina Diniega; Shane Byrne; Nathan T. Bridges; Colin M. Dundas; Alfred S. McEwen
Martian slope gullies are argued to be evidence for recent liquid water flow on the surface of Mars. To explain the source of water, a wide range of environmental conditions and processes has been invoked. However, a lack of information about the environmental context or timing of gully activity makes it difficult to evaluate the theories. Here, we present new observations of extensive gully modification over the past 6 Mars years within dune gullies with slope-gully morphology. Observed activity within 18 gullies in 7 dune fields constrains timing to winter, which is consistent with observed slope-gully activity. These observations show that fluvial processes are unlikely to cause present-day Martian dune-gully activity, and imply that CO 2 frost accumulation may play the dominant role.
Journal of Geophysical Research | 2017
Bethany L. Ehlmann; Kenneth S. Edgett; Brad Sutter; C. N. Achilles; M. L. Litvak; Mathieu G.A. Lapotre; R. Sullivan; A. A. Fraeman; Raymond E. Arvidson; David F. Blake; Nathan T. Bridges; P. G. Conrad; A. Cousin; Robert T. Downs; T. S. J. Gabriel; R. Gellert; Victoria E. Hamilton; Craig Hardgrove; Jeffrey R. Johnson; S. R. Kuhn; Paul R. Mahaffy; Sylvestre Maurice; M. McHenry; P.-Y. Meslin; D. W. Ming; M. E. Minitti; J. M. Morookian; Richard V. Morris; C. D. O'Connell‐Cooper; P. C. Pinet
Abstract The Mars Science Laboratory Curiosity rover performed coordinated measurements to examine the textures and compositions of aeolian sands in the active Bagnold dune field. The Bagnold sands are rounded to subrounded, very fine to medium sized (~45–500 μm) with ≥6 distinct grain colors. In contrast to sands examined by Curiosity in a dust‐covered, inactive bedform called Rocknest and soils at other landing sites, Bagnold sands are darker, less red, better sorted, have fewer silt‐sized or smaller grains, and show no evidence for cohesion. Nevertheless, Bagnold mineralogy and Rocknest mineralogy are similar with plagioclase, olivine, and pyroxenes in similar proportions comprising >90% of crystalline phases, along with a substantial amorphous component (35% ± 15%). Yet Bagnold and Rocknest bulk chemistry differ. Bagnold sands are Si enriched relative to other soils at Gale crater, and H2O, S, and Cl are lower relative to all previously measured Martian soils and most Gale crater rocks. Mg, Ni, Fe, and Mn are enriched in the coarse‐sieved fraction of Bagnold sands, corroborated by visible/near‐infrared spectra that suggest enrichment of olivine. Collectively, patterns in major element chemistry and volatile release data indicate two distinctive volatile reservoirs in Martian soils: (1) amorphous components in the sand‐sized fraction (represented by Bagnold) that are Si‐enriched, hydroxylated alteration products and/or H2O‐ or OH‐bearing impact or volcanic glasses and (2) amorphous components in the fine fraction (<40 μm; represented by Rocknest and other bright soils) that are Fe, S, and Cl enriched with low Si and adsorbed and structural H2O.