Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin Ruprecht is active.

Publication


Featured researches published by Colin Ruprecht.


Frontiers in Plant Science | 2011

Large-Scale Co-Expression Approach to Dissect Secondary Cell Wall Formation Across Plant Species

Colin Ruprecht; Marek Mutwil; Friederike Saxe; Michaela Eder; Zoran Nikoloski; Staffan Persson

Plant cell walls are complex composites largely consisting of carbohydrate-based polymers, and are generally divided into primary and secondary walls based on content and characteristics. Cellulose microfibrils constitute a major component of both primary and secondary cell walls and are synthesized at the plasma membrane by cellulose synthase (CESA) complexes. Several studies in Arabidopsis have demonstrated the power of co-expression analyses to identify new genes associated with secondary wall cellulose biosynthesis. However, across-species comparative co-expression analyses remain largely unexplored. Here, we compared co-expressed gene vicinity networks of primary and secondary wall CESAsin Arabidopsis, barley, rice, poplar, soybean, Medicago, and wheat, and identified gene families that are consistently co-regulated with cellulose biosynthesis. In addition to the expected polysaccharide acting enzymes, we also found many gene families associated with cytoskeleton, signaling, transcriptional regulation, oxidation, and protein degradation. Based on these analyses, we selected and biochemically analyzed T-DNA insertion lines corresponding to approximately twenty genes from gene families that re-occur in the co-expressed gene vicinity networks of secondary wall CESAs across the seven species. We developed a statistical pipeline using principal component analysis and optimal clustering based on silhouette width to analyze sugar profiles. One of the mutants, corresponding to a pinoresinol reductase gene, displayed disturbed xylem morphology and held lower levels of lignin molecules. We propose that this type of large-scale co-expression approach, coupled with statistical analysis of the cell wall contents, will be useful to facilitate rapid knowledge transfer across plant species.


Molecular Plant | 2009

Transcriptional Wiring of Cell Wall-Related Genes in Arabidopsis

Marek Mutwil; Colin Ruprecht; Federico M. Giorgi; Martin Bringmann; Staffan Persson

Transcriptional coordination, or co-expression, of genes may signify functional relatedness of the corresponding proteins. For example, several genes involved in secondary cell wall cellulose biosynthesis are co-expressed with genes engaged in the synthesis of xylan, which is a major component of the secondary cell wall. To extend these types of analyses, we investigated the co-expression relationships of all Carbohydrate-Active enZYmes (CAZy)-related genes for Arabidopsis thaliana. Thus, the intention was to transcriptionally link different cell wall-related processes to each other, and also to other biological functions. To facilitate easy manual inspection, we have displayed these interactions as networks and matrices, and created a web-based interface (http://aranet.mpimp-golm.mpg.de/corecarb) containing downloadable files for all the transcriptional associations.


Frontiers in Plant Science | 2012

Co-expression of cell-wall related genes: new tools and insights

Colin Ruprecht; Staffan Persson

Global transcript analyses based on publicly available microarray dataset have revealed that genes with similar function tend to be transcriptionally coordinated. Indeed, many genes involved in the formation of cellulose, hemicelluloses, and lignin have been identified using co-expression approaches in Arabidopsis. To facilitate these transcript analyses, several web-based tools have been developed that allow researchers to investigate co-expression relationships of their gene(s) of interest. In addition, several tools now also provide the possibility of comparative transcriptional analyses across species, which potentially increases the predictive power. In this short review, we describe recent developments and updates of plant-related co-expression tools, and summarize studies that have successfully used expression profiling in cell wall research. Finally, we illustrate the value of comparative co-expression relationships across species using genes involved in lignin biosynthesis.


Plant Journal | 2017

Phylogenomic analysis of gene co-expression networks reveals the evolution of functional modules

Colin Ruprecht; Sebastian Proost; Marcela Hernandez-Coronado; Carlos Ortiz-Ramírez; Daniel Lang; Stefan A. Rensing; Jörg D. Becker; Klaas Vandepoele; Marek Mutwil

Molecular evolutionary studies correlate genomic and phylogenetic information with the emergence of new traits of organisms. These traits are, however, the consequence of dynamic gene networks composed of functional modules, which might not be captured by genomic analyses. Here, we established a method that combines large-scale genomic and phylogenetic data with gene co-expression networks to extensively study the evolutionary make-up of modules in the moss Physcomitrella patens, and in the angiosperms Arabidopsis thaliana and Oryza sativa (rice). We first show that younger genes are less annotated than older genes. By mapping genomic data onto the co-expression networks, we found that genes from the same evolutionary period tend to be connected, whereas old and young genes tend to be disconnected. Consequently, the analysis revealed modules that emerged at a specific time in plant evolution. To uncover the evolutionary relationships of the modules that are conserved across the plant kingdom, we added phylogenetic information that revealed duplication and speciation events on the module level. This combined analysis revealed an independent duplication of cell wall modules in bryophytes and angiosperms, suggesting a parallel evolution of cell wall pathways in land plants. We provide an online tool allowing plant researchers to perform these analyses at http://www.gene2function.de.


Plant Physiology | 2016

FamNet: A Framework to Identify Multiplied Modules Driving Pathway Expansion in Plants.

Colin Ruprecht; Amelie Mendrinna; Takayuki Tohge; Arun Sampathkumar; Sebastian Klie; Alisdair R. Fernie; Zoran Nikoloski; Staffan Persson; Marek Mutwil

Gene module multiplication drives pathway expansion in plants. Gene duplications generate new genes that can acquire similar but often diversified functions. Recent studies of gene coexpression networks have indicated that, not only genes, but also pathways can be multiplied and diversified to perform related functions in different parts of an organism. Identification of such diversified pathways, or modules, is needed to expand our knowledge of biological processes in plants and to understand how biological functions evolve. However, systematic explorations of modules remain scarce, and no user-friendly platform to identify them exists. We have established a statistical framework to identify modules and show that approximately one-third of the genes of a plant’s genome participate in hundreds of multiplied modules. Using this framework as a basis, we implemented a platform that can explore and visualize multiplied modules in coexpression networks of eight plant species. To validate the usefulness of the platform, we identified and functionally characterized pollen- and root-specific cell wall modules that multiplied to confer tip growth in pollen tubes and root hairs, respectively. Furthermore, we identified multiplied modules involved in secondary metabolite synthesis and corroborated them by metabolite profiling of tobacco (Nicotiana tabacum) tissues. The interactive platform, referred to as FamNet, is available at http://www.gene2function.de/famnet.html.


Plant Physiology | 2017

A Synthetic Glycan Microarray Enables Epitope Mapping of Plant Cell Wall Glycan-Directed Antibodies

Colin Ruprecht; Max Bartetzko; Deborah Senf; Pietro Dallabernardina; Irene Boos; Mathias Christian Franch Andersen; Toshihisa Kotake; J. Paul Knox; Michael G. Hahn; Mads Hartvig Clausen; Fabian Pfrengle

Determining exact epitopes for cell wall-directed monoclonal antibodies provides the basis for a detailed elucidation of polysaccharide structures at the cellular level. In the last three decades, more than 200 monoclonal antibodies have been raised against most classes of plant cell wall polysaccharides by different laboratories worldwide. These antibodies are widely used to identify differences in plant cell wall components in mutants, organ and tissue types, and developmental stages. Despite their importance and broad use, the precise binding epitope has been determined for only a few of these antibodies. Here, we use a plant glycan microarray equipped with 88 synthetic oligosaccharides to comprehensively map the epitopes of plant cell wall glycan-directed antibodies. Our results reveal the binding epitopes for 78 arabinogalactan-, rhamnogalacturonan-, xylan-, and xyloglucan-directed antibodies. We demonstrate that, with knowledge of the exact epitopes recognized by individual antibodies, specific glycosyl hydrolases can be implemented into immunological cell wall analyses, providing a framework to obtain structural information on plant cell wall glycans with unprecedented molecular precision.


Trends in Plant Science | 2017

Beyond Genomics: Studying Evolution with Gene Coexpression Networks

Colin Ruprecht; Neha Vaid; Sebastian Proost; Staffan Persson; Marek Mutwil

Understanding how genomes change as organisms become more complex is a central question in evolution. Molecular evolutionary studies typically correlate the appearance of genes and gene families with the emergence of biological pathways and morphological features. While such approaches are of great importance to understand how organisms evolve, they are also limited, as functionally related genes work together in contexts of dynamic gene networks. Since functionally related genes are often transcriptionally coregulated, gene coexpression networks present a resource to study the evolution of biological pathways. In this opinion article, we discuss recent developments in this field and how coexpression analyses can be merged with existing genomic approaches to transfer functional knowledge between species to study the appearance or extension of pathways.


Science Advances | 2017

Revisiting ancestral polyploidy in plants

Colin Ruprecht; Rolf Lohaus; Kevin Vanneste; Marek Mutwil; Zoran Nikoloski; Yves Van de Peer; Staffan Persson

Reanalysis reveals flaws in the original phylogenomic evidence for two ancestral whole-genome duplications in plants. Whole-genome duplications (WGDs) or polyploidy events have been studied extensively in plants. In a now widely cited paper, Jiao et al. presented evidence for two ancient, ancestral plant WGDs predating the origin of flowering and seed plants, respectively. This finding was based primarily on a bimodal age distribution of gene duplication events obtained from molecular dating of almost 800 phylogenetic gene trees. We reanalyzed the phylogenomic data of Jiao et al. and found that the strong bimodality of the age distribution may be the result of technical and methodological issues and may hence not be a “true” signal of two WGD events. By using a state-of-the-art molecular dating algorithm, we demonstrate that the reported bimodal age distribution is not robust and should be interpreted with caution. Thus, there exists little evidence for two ancient WGDs in plants from phylogenomic dating.


PLOS ONE | 2012

Paramutation-Like Interaction of T-DNA Loci in Arabidopsis

Weiya Xue; Colin Ruprecht; Nathaniel R. Street; Kian Hématy; Christine Q. Chang; Wolf B. Frommer; Staffan Persson; Totte Niittylä

In paramutation, epigenetic information is transferred from one allele to another to create a gene expression state which is stably inherited over generations. Typically, paramutation describes a phenomenon where one allele of a gene down-regulates the expression of another allele. Paramutation has been described in several eukaryotes and is best understood in plants. Here we describe an unexpected paramutation-like trans SALK T-DNA interaction in Arabidopsis. Unlike most of the previously described paramutations, which led to gene silencing, the trans SALK T-DNA interaction caused an increase in the transcript levels of the endogenous gene (COBRA) where the T-DNA was inserted. This increased COBRA expression state was stably inherited for several generations and led to the partial suppression of the cobra phenotype. DNA methylation was implicated in this trans SALK T-DNA interaction since mutation of the DNA methyltransferase 1 in the suppressed cobra caused a reversal of the suppression. In addition, null mutants of the DNA demethylase ROS1 caused a similar COBRA transcript increase in the cobra SALK T-DNA mutant as the trans T-DNA interaction. Our results provide a new example of a paramutation-like trans T-DNA interaction in Arabidopsis, and establish a convenient hypocotyl elongation assay to study this phenomenon. The results also alert to the possibility of unexpected endogenous transcript increase when two T-DNAs are combined in the same genetic background.


Chemistry: A European Journal | 2017

Active Site-Mapping of Xylan-Deconstructing Enzymes with Arabinoxylan Oligosaccharides Produced by Automated Glycan Assembly

Deborah Senf; Colin Ruprecht; Goswinus H M de Kruijff; Sebastian O Simonetti; Frank Schuhmacher; Peter H. Seeberger; Fabian Pfrengle

Xylan-degrading enzymes are crucial for the deconstruction of hemicellulosic biomass, making the hydrolysis products available for various industrial applications such as the production of biofuel. To determine the substrate specificities of these enzymes, we prepared a collection of complex xylan oligosaccharides by automated glycan assembly. Seven differentially protected building blocks provided the basis for the modular assembly of 2-substituted, 3-substituted, and 2-/3-substituted arabino- and glucuronoxylan oligosaccharides. Elongation of the xylan backbone relied on iterative additions of C4-fluorenylmethoxylcarbonyl (Fmoc) protected xylose building blocks to a linker-functionalized resin. Arabinofuranose and glucuronic acid residues have been selectively attached to the backbone using fully orthogonal 2-(methyl)naphthyl (Nap) and 2-(azidomethyl)benzoyl (Azmb) protecting groups at the C2 and C3 hydroxyls of the xylose building blocks. The arabinoxylan oligosaccharides are excellent tools to map the active site of glycosyl hydrolases involved in xylan deconstruction. The substrate specificities of several xylanases and arabinofuranosidases were determined by analyzing the digestion products after incubation of the oligosaccharides with glycosyl hydrolases.

Collaboration


Dive into the Colin Ruprecht's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Deborah Senf

Free University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Boos

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge