Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colin Woon is active.

Publication


Featured researches published by Colin Woon.


Journal of Hand Surgery (European Volume) | 2012

The Effect of Suture Coated With Mesenchymal Stem Cells and Bioactive Substrate on Tendon Repair Strength in a Rat Model

Jeffrey Yao; Colin Woon; Anthony W. Behn; Tatiana Korotkova; Don-Young Park; Varun K. Gajendran; R. Lane Smith

PURPOSE Exogenously administered mesenchymal stem cells and bioactive molecules are known to enhance tendon healing. Biomolecules have been successfully delivered using sutures that elute growth factors over time. We sought to evaluate the histologic and biomechanical effect of delivering both cells and bioactive substrates on a suture delivery vehicle in comparison with sutures coated with bioactive substrates alone. METHODS Bone marrow-derived stem cells were harvested from Sprague-Dawley rat femurs. Experimental cell and substrate-coated, coated suture (CS) group sutures were precoated with intercellular cell adhesion molecule 1 and poly-L-lysine and seeded with labeled bone marrow-derived stem cells. Control (substrate-only [SO] coated) group sutures were coated with intercellular cell adhesion molecule 1 and poly-L-lysine only. Using a matched-paired design, bilateral Sprague-Dawley rat Achilles tendons (n = 105 rats) were transected and randomized to CS or SO repairs. Tendons were harvested at 4, 7, 10, 14, and 28 days and subjected to histologic and mechanical assessment. RESULTS Labeled cells were present at repair sites at all time points. The CS suture repairs displayed statistically greater strength compared to SO repairs at 7 days (12.6 ± 5.0 N vs 8.6 ± 3.7 N, respectively) and 10 days (21.2 ± 4.9 N vs 16.4 ± 4.8 N, respectively). There was no significant difference between the strength of CS suture repairs compared with SO repairs at 4 days (8.1 ± 5.1 N vs 6.6 ± 2.3 N, respectively), 14 days (22.8 ± 7.3 N vs 25.1 ± 9.7 N, respectively), and 28 days (40.9 ± 12.4 N vs 34.6 ± 15.0 N, respectively). CONCLUSIONS Bioactive CS sutures enhanced repair strength at 7 to 10 days. There was no significant effect at later stages. CLINICAL RELEVANCE The strength nadir of a tendon repair occurs in the first 2 weeks after surgery. Bioactive suture repair might provide a clinical advantage by jump-starting the repair process during this strength nadir. Improved early strength might, in turn allow earlier unprotected mobilization.


Plastic and Reconstructive Surgery | 2011

Optimization of Human Tendon Tissue Engineering: Peracetic Acid Oxidation for Enhanced Reseeding of Acellularized Intrasynovial Tendon

Colin Woon; Brian C. Pridgen; Armin Kraus; Sina Bari; Hung Pham; James Chang

Background: Tissue engineering of human flexor tendons combines tendon scaffolds with recipient cells to create complete cell-tendon constructs. Allogenic acellularized human flexor tendon has been shown to be a useful natural scaffold. However, there is difficulty repopulating acellularized tendon with recipient cells, as cell penetration is restricted by a tightly woven tendon matrix. The authors evaluated peracetic acid treatment in optimizing intratendinous cell penetration. Methods: Cadaveric human flexor tendons were harvested, acellularized, and divided into experimental groups. These groups were treated with peracetic acid in varying concentrations (2%, 5%, and 10%) and for varying time periods (4 and 20 hours) to determine the optimal treatment protocol. Experimental tendons were analyzed for differences in tendon microarchitecture. Additional specimens were reseeded by incubation in a fibroblast cell suspension at 1 × 106 cells/ml. This group was then analyzed for reseeding efficacy. A final group underwent biomechanical studies for strength. Results: The optimal treatment protocol comprising peracetic acid at 5% concentration for 4 hours produced increased scaffold porosity, improving cell penetration and migration. Treated scaffolds did not show reduced collagen or glycosaminoglycan content compared with controls (p = 0.37 and p = 0.65, respectively). Treated scaffolds were cytotoxic to neither attached cells nor the surrounding cell suspension. Treated scaffolds also did not show inferior ultimate tensile stress or elastic modulus compared with controls (p = 0.26 and p = 0.28, respectively). Conclusions: Peracetic acid treatment of acellularized tendon scaffolds increases matrix porosity, leading to greater reseeding. It may prove to be an important step in tissue engineering of human flexor tendon using natural scaffolds.


Plastic and Reconstructive Surgery | 2013

Co-culture of human adipose-derived stem cells with tenocytes increases proliferation and induces differentiation into a tenogenic lineage.

Armin Kraus; Colin Woon; Shyam S. Raghavan; Kai Megerle; Hung Pham; James Chang

Background: Seeding acellularized tendons with cells is an approach for creating tissue-engineered tendon grafts with favorable biomechanical properties. It was the authors’ aim to evaluate whether human adipose-derived stem cells could replace tenocytes for scaffold seeding. Methods: Adipose-derived stem cells and tenocytes were co-cultured in different ratios (3:1, 1:1, and 1:3) and with three different methods: (1) direct co-culture, (2) tenocyte-conditioned media on adipose-derived stem cells, and (3) an insert system to keep both cell types in the same media without contact. Proliferation, collagen production, and tenogenic marker expression were measured by hematocytometry, immunocytochemistry, enzyme-linked immunosorbent assay, and real-time polymerase chain reaction. Results: Proliferation and collagen production were similar for tenocytes and adipose-derived stem cells alone. Phenotype difference between adipose-derived stem cells and tenocytes was indicated by higher tenascin C and scleraxis expression in tenocytes. Proliferation was increased in direct co-cultures, especially at an adipose-derived stem cells–to-tenocyte ratio of 3:1, and for tenocytes in adipose-derived stem cell–conditioned media. Direct co-culture caused significant up-regulation in tenascin C expression in adipose-derived stem cells (4.0-fold; p < 005). In tenocyte-conditioned media, tenascin C expression was up-regulated 2.5-fold (p < 0.05). In the insert system, tenascin C expression was up-regulated 2.3-fold (p < 0.05). Conclusions: Adipose-derived stem cells are good candidates for tendon tissue engineering because they are similar to tenocytes in proliferation and collagen production. With an optimal ratio of 3:1, they increase proliferation in co-culture and change their phenotype toward a tenogenic direction.


Plastic and Reconstructive Surgery | 2013

Human flexor tendon tissue engineering: in vivo effects of stem cell reseeding.

Taliah Schmitt; Paige M. Fox; Colin Woon; Simon Farnebo; Joel A. Bronstein; Anthony W. Behn; Hung Pham; James Chang

Background: Tissue-engineered human flexor tendons may be an option to aid in reconstruction of complex upper extremity injuries with significant tendon loss. The authors hypothesize that human adipose-derived stem cells remain viable following reseeding on human tendon scaffolds in vivo and aid in graft integration. Methods: Decellularized human flexor tendons harvested from fresh-frozen cadavers and reseeded with green fluorescent protein–labeled pooled human adipose-derived stem cells were examined with bioluminescent imaging and immunohistochemistry. Reseeded repaired tendons were compared biomechanically with unseeded controls following implantation in athymic rats at 2 and 4 weeks. The ratio of collagen I to collagen III at the repair site was examined using Sirius red staining. To confirm cell migration, reseeded and unseeded tendons were placed either in contact or with a 1-mm gap for 12 days. Green fluorescent protein signal was then detected. Results: Following reseeding, viable cells were visualized at 12 days in vitro and 4 weeks in vivo. Biomechanical testing revealed no significant difference in ultimate load to failure and 2-mm gap force. Histologic evaluation showed host cell invasion and proliferation of the repair sites. No increase in collagen III was noted in reseeded constructs. Cell migration was confirmed from reseeded constructs to unseeded tendon scaffolds with tendon contact. Conclusions: Human adipose-derived stem cells reseeded onto decellularized allograft scaffolds are viable over 4 weeks in vivo. The movement of host cells into the scaffold and movement of adipose-derived stem cells along and into the scaffold suggests biointegration of the allograft.


Plastic and Reconstructive Surgery | 2012

Optimization of human tendon tissue engineering: synergistic effects of growth factors for use in tendon scaffold repopulation.

Shyam S. Raghavan; Colin Woon; Armin Kraus; Kai Megerle; Hung Pham; James Chang

Background: Tissue-engineered flexor tendon grafts may allow reconstruction of severe tendon losses. One critical factor is the optimization of cell proliferation and reseeding. Use of growth factors—basic fibroblast growth factor (bFGF), insulin-like growth factor (IGF)-1, and platelet-derived growth factor (PDGF)-BB—may improve culture conditions for human fibroblasts, tenocytes, and adipose-derived stem cells and increase repopulation of a tendon scaffold. Methods: All cell types were plated at a density of 10,000 cells per well and cultured in F12 media supplemented with varying concentrations of bFGF, IGF-1, and PDGF-BB. After 72 hours, cell proliferation was determined using the CellTiter assay. Human flexor tendon segments were acellularized and reseeded in a cell suspension of 5 × 105 cells/ml. After 5 days, tendon repopulation was determined using the MTS assay and histology. Statistical significance was determined with analysis of variance and a t test. Results: For all cell types, there was enhanced proliferation with growth factors. Among single growth factors, PDGF-BB at 50 ng/ml was the most efficient stimulator of proliferation. With multiple growth factors, the optimal concentration was determined to be 5 ng/ml bFGF, 50 ng/ml IGF-1, and 50 ng/ml PDGF-BB (increase when compared with control: fibroblasts, 2.92-fold; tenocytes, 2.3-fold; and adipose-derived stem cells, 2.4-fold; p < 0.05). Tendons reseeded with this optimal combination of growth factors showed improved reseeding compared with the control group (fibroblasts, 2.01-fold; tenocytes, 1.78-fold; and adipose-derived stem cells, 1.76-fold; p < 0.05). Conclusions: bFGF, IGF-1, and PDGF-BB can be used to improve cellular proliferation and repopulation of an acellularized scaffold. The use of growth factors may be an important step in the tissue engineering of human flexor tendons.


Plastic and Reconstructive Surgery | 2014

Augmentation of tendon healing with an injectable tendon hydrogel in a rat Achilles tendon model.

Maxwell Kim; Simon Farnebo; Colin Woon; Taliah Schmitt; Hung Pham; James Chang

Background: Many unsolved problems in plastic and hand surgery are related to poor healing of acute and chronic tendon injuries. The authors hypothesized that tendon healing could be augmented by the addition of a tendon-derived, extracellular matrix hydrogel that would guide tissue regeneration. Methods: Both Achilles tendons of 36 Wistar rats were given full-thickness injuries approximately 5 mm long and 0.5 mm wide from the tendon insertion at the calcaneus to the midsubstance. The hydrogel was injected into the injury site of one leg and compared with control saline in the other. The ultimate failure load, ultimate tensile stress, and stiffness were evaluated at 2, 4, and 8 weeks. Tendon cross-sections underwent histologic analysis (hematoxylin and eosin and picrosirius red) after the animals were killed. Statistical analysis of biomechanical data was performed using a paired t test. Results: There was no significant difference in strength between gel and saline injections in ultimate failure load (p = 0.15), ultimate tensile stress (p = 0.42), or stiffness (p = 0.76) at 2 weeks. However, there was a significant difference in ultimate failure load (74.8 ± 11.6 N versus 58.4 ± 14.2 N; p = 0.02) at 4 weeks. The difference in ultimate tensile stress (p = 0.63) and stiffness (p = 0.08) remained insignificant. By 8 weeks, there was no significant difference in strength in ultimate failure load (p = 0.15), ultimate tensile stress (p = 0.39), or stiffness (p = 0.75). Conclusions: Treatment with the tendon hydrogel significantly increases the ultimate failure load of tendons at the critical 4-week time point, and is a promising method for augmentation of tendon healing.


Plastic and Reconstructive Surgery | 2013

Physicochemical decellularization of composite flexor tendon-bone interface grafts.

Joel A. Bronstein; Colin Woon; Simon Farnebo; Anthony W. Behn; Taliah Schmitt; Hung Pham; Alesha B. Castillo; James Chang

Background: Extremity injuries involving tendon attachment to bone are difficult to address. Clinically, tendon-bone interface allografts must be decellularized to reduce immunogenicity. Composite grafts are difficult to decellularize because chemical agents cannot reach cells between tissues. In this study, the authors attempted to optimize tendon-bone interface graft decellularization. Methods: Human flexor digitorum profundus tendons with attached distal phalanx were harvested from cadavers and divided into four groups. Group 1 (control) was untreated. Group 2 (chemical) was chemically treated with 5% peracetic acid, 0.1% ethylenediaminetetraacetic acid, and 0.1% sodium dodecyl sulfate. Group 3 (low-power) underwent targeted ultrasonication for 3 minutes (22,274 J, 126W) followed by chemical decellularization. Group 4 (high-power) underwent targeted ultrasonication for 10 minutes (88,490 J, 155W) followed by chemical decellularization. Decellularization was assessed histologically with hematoxylin and eosin stain and stains for major histocompatibility complex I stains. Cell counts were performed. The ultimate tensile load of decellularized grafts (group 4) were compared with pair-matched untreated grafts (group 1). Results: Average cell counts were 100 ± 41, 27 ± 10, 12 ± 11, and 6 ± 11 per high-power field for groups 1, 2, 3, and 4, respectively (p < 0.001). Decellularization using physical and chemical treatments (groups 3 and 4) resulted in substantial reduction of cells and major histocompatibility complex I molecules. There was no difference in ultimate tensile load between treated (group4) and untreated (group 1) samples (p > 0.5). Conclusions: Physicochemical decellularization of tendon-bone interface grafts using targeted ultrasonication and chemical treatment resulted in near-complete reduction in cellularity and maintenance of tensile strength. In the future, these decellularized composite scaffolds may be used for reconstruction of tendon-bone injuries.


Plastic and Reconstructive Surgery | 2014

Decellularized tendon-bone composite grafts for extremity reconstruction: an experimental study.

Simon Farnebo; Colin Woon; Joel A. Bronstein; Taliah Schmitt; Derek P. Lindsey; Hung Pham; Alesha B. Castillo; James Chang

Background: Restoration of biomechanical strength following surgical reconstruction of tendon or ligament insertion tears is challenging because these injuries typically heal as fibrous scars. The authors hypothesize that injuries at the tendon-bone interface would benefit from reconstruction with decellularized composite tendon-bone grafts. Methods: Tendon-bone grafts were harvested from Sprague-Dawley rats. Grafts subjected to decellularization were compared histologically and biomechanically with untreated grafts ex vivo and in a new in vivo model. Wistar rats underwent Sprague-Dawley allograft reconstruction using a pair-matched design. The rats were killed at 2 or 4 weeks. B-cell and macrophage infiltration was determined using immunohistochemistry, and explants were tested biomechanically. Results: Decellularization resulted in a decrease in cells from 164 ± 61 (untreated graft) to 13 ± 7 cells per high-power field cells (p < 0.005) and a corresponding significant decrease in DNA content, and preserved scaffold architecture of the tendon-bone interface. Biomechanical comparison revealed no difference in failure load (p = 0.32), ultimate tensile stress (p = 0.76), or stiffness (p = 0.22) between decellularized grafts and untreated controls. Following in vivo reconstruction with tendon-bone interface grafts, decellularized grafts were stronger than untreated grafts at 2 weeks (p = 0.047) and at 4 weeks (p < 0.005). A persistent increase in B-cell and macrophage infiltration was observed in both the capsule surrounding the tendon-bone interface and the tendon substance in untreated controls. Conclusion: Decellularized tendon-bone grafts display better biomechanical properties at early healing time points and a decreased immune response compared with untreated grafts in vivo.


Journal of Hand Surgery (European Volume) | 2014

Reconstruction of the Tendon–Bone Insertion With Decellularized Tendon–Bone Composite Grafts: Comparison With Conventional Repair

Simon Farnebo; Colin Woon; Maxwell Kim; Hung Pham; James Chang

PURPOSE Injuries involving the tendon-bone interface (TBI) are difficult to address. Standard techniques typically lead to diminished strength of the healed insertion site. We hypothesized that these injuries would benefit from being reconstructed with decellularized composite grafts replacing both tendon and bone. To test this hypothesis, decellularized grafts were compared with conventional pullout repairs in an in vivo animal model. METHODS We harvested 48 Achilles TBI grafts from rats and decellularized them. Tendon-bone interface graft reconstruction and pullout repairs were compared using a pair-matched design. Biomechanical properties were evaluated at 2, 4, 8, and 12 weeks. We evaluated histological analysis of insertion morphology and collagen type I/III content. RESULTS There was a significant increase in ultimate failure load (35 ± 11 vs 24 ± 7 N) and ultimate tensile stress (1.5 ± 0.3 vs 1.0 ± 0.4 N/mm(2)) of the TBI grafts compared with pullout repairs at 2 weeks. These differences remained at 4 weeks. At 12 weeks, both TBI grafts and pullout repairs were as strong as native tissue and not significantly different from each other. Histology showed a more organized extracellular matrix in the TBI graft group at the early time points. Repopulation of the decellularized grafts increased over time. At 12 weeks, the insertion points of both groups were richly populated with cells that possessed morphologies similar to those found in native TBI. CONCLUSIONS This study showed that decellularized TBI grafts were stronger compared with conventional pullout repairs at 2 and 4 weeks but were comparable at 12 weeks. A more organized extracellular matrix and different collagen composition in the early time points may explain the observed differences in strength. CLINICAL RELEVANCE In the future, decellularized TBI grafts may be used to reconstruct tendon-bone insertion tears in multiple areas including the flexor tendon system.


Journal of Hand Surgery (European Volume) | 2012

Tissue-engineered Collateral Ligament Composite Allografts for Scapholunate Ligament Reconstruction: An Experimental Study

Ryan Endress; Colin Woon; Simon Farnebo; Anthony W. Behn; Joel A. Bronstein; Hung Pham; Xinrui Yan; Sanjiv S. Gambhir; James Chang

PURPOSE In patients with chronic scapholunate (SL) dissociation or dynamic instability, ligament repair is often not possible, and surgical reconstruction is indicated. The ideal graft ligament would recreate both anatomical and biomechanical properties of the dorsal scapholunate ligament (dorsal SLIL). The finger proximal interphalangeal joint (PIP joint) collateral ligament could possibly be a substitute ligament. METHODS We harvested human PIP joint collateral ligaments and SL ligaments from 15 cadaveric limbs. We recorded ligament length, width, and thickness, and measured the biomechanical properties (ultimate load, stiffness, and displacement to failure) of native dorsal SLIL, untreated collateral ligaments, decellularized collateral ligaments, and SL repairs with bone-collateral ligament-bone composite collateral ligament grafts. As proof of concept, we then reseeded decellularized bone-collateral ligament-bone composite grafts with green fluorescent protein-labeled adipo-derived mesenchymal stem cells and evaluated them histologically. RESULTS There was no difference in ultimate load, stiffness, and displacement to failure among native dorsal SLIL, untreated and decellularized collateral ligaments, and SL repairs with tissue-engineered collateral ligament grafts. With pair-matched untreated and decellularized scaffolds, there was no difference in ultimate load or stiffness. However, decellularized ligaments revealed lower displacement to failure compared with untreated ligaments. There was no difference in displacement between decellularized ligaments and native dorsal SLIL. We successfully decellularized grafts with recently described techniques, and they could be similarly reseeded. CONCLUSIONS Proximal interphalangeal joint collateral ligament-based bone-collateral ligament-bone composite allografts had biomechanical properties similar to those of native dorsal SLIL. Decellularization did not adversely affect material properties. CLINICAL RELEVANCE These tissue-engineered grafts may offer surgeons another option for reconstruction of chronic SL instability.

Collaboration


Dive into the Colin Woon's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Derek P. Lindsey

VA Palo Alto Healthcare System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge