Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colleen Caleshu is active.

Publication


Featured researches published by Colleen Caleshu.


JAMA | 2014

Clinical Interpretation and Implications of Whole-Genome Sequencing

Frederick E. Dewey; Megan E. Grove; Cuiping Pan; Benjamin A. Goldstein; Jonathan A. Bernstein; Hassan Chaib; Jason D. Merker; Rachel L. Goldfeder; Gregory M. Enns; Sean P. David; Neda Pakdaman; Kelly E. Ormond; Colleen Caleshu; Kerry Kingham; Teri E. Klein; Michelle Whirl-Carrillo; Kenneth Sakamoto; Matthew T. Wheeler; Atul J. Butte; James M. Ford; Linda M. Boxer; John P. A. Ioannidis; Alan C. Yeung; Russ B. Altman; Themistocles L. Assimes; Michael Snyder; Euan A. Ashley; Thomas Quertermous

IMPORTANCE Whole-genome sequencing (WGS) is increasingly applied in clinical medicine and is expected to uncover clinically significant findings regardless of sequencing indication. OBJECTIVES To examine coverage and concordance of clinically relevant genetic variation provided by WGS technologies; to quantitate inherited disease risk and pharmacogenomic findings in WGS data and resources required for their discovery and interpretation; and to evaluate clinical action prompted by WGS findings. DESIGN, SETTING, AND PARTICIPANTS An exploratory study of 12 adult participants recruited at Stanford University Medical Center who underwent WGS between November 2011 and March 2012. A multidisciplinary team reviewed all potentially reportable genetic findings. Five physicians proposed initial clinical follow-up based on the genetic findings. MAIN OUTCOMES AND MEASURES Genome coverage and sequencing platform concordance in different categories of genetic disease risk, person-hours spent curating candidate disease-risk variants, interpretation agreement between trained curators and disease genetics databases, burden of inherited disease risk and pharmacogenomic findings, and burden and interrater agreement of proposed clinical follow-up. RESULTS Depending on sequencing platform, 10% to 19% of inherited disease genes were not covered to accepted standards for single nucleotide variant discovery. Genotype concordance was high for previously described single nucleotide genetic variants (99%-100%) but low for small insertion/deletion variants (53%-59%). Curation of 90 to 127 genetic variants in each participant required a median of 54 minutes (range, 5-223 minutes) per genetic variant, resulted in moderate classification agreement between professionals (Gross κ, 0.52; 95% CI, 0.40-0.64), and reclassified 69% of genetic variants cataloged as disease causing in mutation databases to variants of uncertain or lesser significance. Two to 6 personal disease-risk findings were discovered in each participant, including 1 frameshift deletion in the BRCA1 gene implicated in hereditary breast and ovarian cancer. Physician review of sequencing findings prompted consideration of a median of 1 to 3 initial diagnostic tests and referrals per participant, with fair interrater agreement about the suitability of WGS findings for clinical follow-up (Fleiss κ, 0.24; P < 001). CONCLUSIONS AND RELEVANCE In this exploratory study of 12 volunteer adults, the use of WGS was associated with incomplete coverage of inherited disease genes, low reproducibility of detection of genetic variation with the highest potential clinical effects, and uncertainty about clinically reportable findings. In certain cases, WGS will identify clinically actionable genetic variants warranting early medical intervention. These issues should be considered when determining the role of WGS in clinical medicine.


PLOS Genetics | 2011

Phased Whole-Genome Genetic Risk in a Family Quartet Using a Major Allele Reference Sequence

Frederick E. Dewey; Rong Chen; Sergio Cordero; Kelly E. Ormond; Colleen Caleshu; Konrad J. Karczewski; Michelle Whirl-Carrillo; Matthew T. Wheeler; Joel T. Dudley; Jake K. Byrnes; Omar E. Cornejo; Joshua W. Knowles; Mark Woon; Li Gong; Caroline F. Thorn; Joan M. Hebert; Emidio Capriotti; Sean P. David; Aleksandra Pavlovic; Anne West; Joseph V. Thakuria; Madeleine Ball; Alexander Wait Zaranek; Heidi L. Rehm; George M. Church; John West; Carlos Bustamante; Michael Snyder; Russ B. Altman; Teri E. Klein

Whole-genome sequencing harbors unprecedented potential for characterization of individual and family genetic variation. Here, we develop a novel synthetic human reference sequence that is ethnically concordant and use it for the analysis of genomes from a nuclear family with history of familial thrombophilia. We demonstrate that the use of the major allele reference sequence results in improved genotype accuracy for disease-associated variant loci. We infer recombination sites to the lowest median resolution demonstrated to date (<1,000 base pairs). We use family inheritance state analysis to control sequencing error and inform family-wide haplotype phasing, allowing quantification of genome-wide compound heterozygosity. We develop a sequence-based methodology for Human Leukocyte Antigen typing that contributes to disease risk prediction. Finally, we advance methods for analysis of disease and pharmacogenomic risk across the coding and non-coding genome that incorporate phased variant data. We show these methods are capable of identifying multigenic risk for inherited thrombophilia and informing the appropriate pharmacological therapy. These ethnicity-specific, family-based approaches to interpretation of genetic variation are emblematic of the next generation of genetic risk assessment using whole-genome sequencing.


Circulation | 2012

Genetics and Cardiovascular Disease A Policy Statement From the American Heart Association

Euan A. Ashley; Ray E. Hershberger; Colleen Caleshu; Patrick T. Ellinor; Joe G. N. Garcia; David M. Herrington; Carolyn Y. Ho; Julie A. Johnson; Steven J. Kittner; Calum A. MacRae; Gia Mudd-Martin; Daniel J. Rader; Dan M. Roden; Derek Scholes; Frank W. Sellke; Jeffrey A. Towbin; Jennifer E. Van Eyk; Bradford B. Worrall

Although the power of family history to identify a genetic predisposition to disease has been appreciated for some time, it is only recently, through the development of efficient methods for molecular genotyping and specific genetic tests, that a detailed genetic evaluation could be used to influence clinical medicine. Indeed, the mapping of the human genome and the more recent development of high-throughput methodologies have the potential to entirely transform how we think about genetic predisposition to disease. This represents a great opportunity to improve human health. Yet these recent technological advances also create new moral, ethical, and legal challenges that must be addressed before the opportunities to improve human health can be fully realized. In the present report, we summarize the existing regulatory landscape with respect to the use of genetic information in clinical medicine and offer new policy recommendations designed to facilitate the safe incorporation of the latest technologies and research findings into the clinical domain. Specifically, we focus on areas in which genetic evaluation, including personal and family history, examination, counseling, and testing, has the potential to impact the practice of cardiovascular medicine and research. ### Gene Patents Patent law is enshrined in the US Constitution in Article I, Section 8, and the principles imply that to be patent eligible, an invention needs to demonstrate novelty, utility, and nonobviousness. As such, although the patenting of raw naturally occurring materials has been generally rejected, where significant innovation is involved in its isolation, the patent office has generally granted protection (for example, insulin and adrenaline). In 1980, the US Supreme Court deemed a living organism patentable ( Diamond v Chakrabarty ) if “man-made,” as potentially accomplished via genetic engineering. In the wake of this decision, the US Patent and Trademark Office (USPTO) began to approve applications with DNA sequences central to the patent claim, initially …


Circulation-cardiovascular Genetics | 2012

Cardiac Structural and Sarcomere Genes Associated with Cardiomyopathy Exhibit Marked Intolerance of Genetic Variation

Stephen Pan; Colleen Caleshu; Kyla Dunn; Marcia J. Foti; Maura Moran; Oretunlewa Soyinka; Euan A. Ashley

Background—The clinical significance of variants in genes associated with inherited cardiomyopathies can be difficult to determine because of uncertainty regarding population genetic variation and a surprising amount of tolerance of the genome even to loss-of-function variants. We hypothesized that genes associated with cardiomyopathy might be particularly resistant to the accumulation of genetic variation. Methods and Results—We analyzed the rates of single nucleotide genetic variation in all known genes from the exomes of >5000 individuals from the National Heart, Lung, and Blood Institute’s Exome Sequencing Project, as well as the rates of structural variation from the Database of Genomic Variants. Most variants were rare, with over half unique to 1 individual. Cardiomyopathy-associated genes exhibited a rate of nonsense variants, about 96.1% lower than other Mendelian disease genes. We tested the ability of in silico algorithms to distinguish between a set of variants in MYBPC3, MYH7, and TNNT2 with strong evidence for pathogenicity and variants from the Exome Sequencing Project data. Algorithms based on conservation at the nucleotide level (genomic evolutionary rate profiling, PhastCons) did not perform as well as amino acid-level prediction algorithms (Polyphen-2, SIFT). Variants with strong evidence for disease causality were found in the Exome Sequencing Project data at prevalence higher than expected. Conclusions—Genes associated with cardiomyopathy carry very low rates of population variation. The existence in population data of variants with strong evidence for pathogenicity suggests that even for Mendelian disease genetics, a probabilistic weighting of multiple variants may be preferred over the single gene causality model.


Heart | 2010

Use and interpretation of genetic tests in cardiovascular genetics

Colleen Caleshu; Sharlene M. Day; Heidi L. Rehm; Samantha Baxter

Our understanding of the genetic basis of many Mendelian forms of cardiovascular disease has advanced significantly in the last 5–10 years. There are now many professional society guidelines that recommend genetic testing for a variety of hereditary cardiovascular diseases including long QT syndrome, hypertrophic cardiomyopathy, and arrhythmogenic right ventricular cardiomyopathy (ARVC).1–3 The number of genes associated with cardiac conditions continues to increase, and the number of clinically available genetic tests for cardiac conditions has expanded rapidly in recent years (table 1). View this table: Table 1 Genetic tests for hereditary cardiac conditions. Genetic tests for hereditary cardiac conditions typically involve sequencing some or all of the various genes associated with a given condition. The number of genes included and the sequencing methodology used may vary by laboratory. Some laboratories also offer analyses to look for duplications or deletions in the associated genes Clinical genetic testing can be highly valuable in the management of families with hereditary disease. Determining which family members inherited the genetic predisposition to cardiac disease allows us to separate those in need of lifelong clinical evaluations from those who need no further evaluations beyond those recommended for the general population. This strategy is particularly valuable in inherited cardiovascular diseases where definitive clinical diagnosis of at-risk relatives is limited by incomplete penetrance, variable age of onset and, in some cases, insensitivity of clinical testing.4–7 Recent guidelines and expert opinions have gone beyond simply recommending genetic testing; they emphasise important points for the judicious use of genetic testing such as performing genetic testing on the most clearly affected person in the family, careful genetic counselling regarding the implications of positive, negative or uncertain results, and consideration of referral to a specialised centre due to the complexity of such genetic evaluations.1 8 9 To further elucidate principles and approaches critical to the …


American Journal of Medical Genetics Part A | 2011

Furthering the Link Between the Sarcomere and Primary Cardiomyopathies: Restrictive Cardiomyopathy Associated with Multiple Mutations in Genes Previously Associated With Hypertrophic or Dilated Cardiomyopathy

Colleen Caleshu; Rahul Sakhuja; Robert L. Nussbaum; Nelson B. Schiller; Philip C. Ursell; Celeste Eng; Teresa De Marco; Dana McGlothlin; Esteban G. Burchard; J. Eduardo Rame

Mutations in genes that encode components of the sarcomere are well established as the cause of hypertrophic and dilated cardiomyopathies. Sarcomere genes, however, are increasingly being associated with other cardiomyopathies. One phenotype more recently recognized as a disease of the sarcomere is restrictive cardiomyopathy (RCM). We report on two patients with RCM associated with multiple mutations in sarcomere genes not previously associated with RCM. Patient 1 presented with NYHA Class III/IV heart failure at 22 years of age. She was diagnosed with RCM and advanced heart failure requiring heart transplantation. Sequencing of sarcomere genes revealed previously reported homozygous p.Glu143Lys mutations in MYL3, and a novel heterozygous p.Gly57Glu mutation in MYL2. The patients mother is a double heterozygote for these mutations, with no evidence of cardiomyopathy. Patient 2 presented at 35 years of age with volume overload while hospitalized for oophorectomy. She was diagnosed with RCM and is being evaluated for heart transplantation. Sarcomere gene sequencing identified homozygous p.Asn279His mutations in TPM1. The patients parents are consanguineous and confirmed heterozygotes. Her father was diagnosed with HCM at 42 years of age. This is the first report of mutations in TPM1, MYL3, and MYL2 associated with primary, non‐hypertrophied RCM. The association of more sarcomere genes with RCM provides further evidence that mutations in the various sarcomere genes can cause different cardiomyopathy phenotypes. These cases also contribute to the growing body of evidence that multiple mutations have an additive effect on the severity of cardiomyopathies.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Multidimensional structure-function relationships in human β-cardiac myosin from population-scale genetic variation

Julian R. Homburger; Eric M. Green; Colleen Caleshu; Margaret S. Sunitha; Rebecca E. Taylor; Kathleen M. Ruppel; Raghu Metpally; Steven D. Colan; Michelle Michels; Sharlene M. Day; Iacopo Olivotto; Carlos Bustamante; Frederick E. Dewey; Carolyn Y. Ho; James A. Spudich; Euan A. Ashley

Significance Genetic variants in human β-cardiac myosin, which causes muscle contraction in the heart, can lead to hypertrophic cardiomyopathy (HCM), an inherited heart disease that can cause sudden death. New technologies have generated sequence data for large numbers of patients with HCM and unaffected individuals. In this study, we compare the protein structural locations of genetic variants of patients with HCM and the general population to identify spatial regions of the myosin that have a higher than expected proportion of genetic variants associated with HCM and earlier age at diagnosis. In addition, we develop new methods to interrogate the localization of genetic changes in protein structures. Our study demonstrates the power of combining clinical, genetic, and structural data to gain insight into Mendelian disease. Myosin motors are the fundamental force-generating elements of muscle contraction. Variation in the human β-cardiac myosin heavy chain gene (MYH7) can lead to hypertrophic cardiomyopathy (HCM), a heritable disease characterized by cardiac hypertrophy, heart failure, and sudden cardiac death. How specific myosin variants alter motor function or clinical expression of disease remains incompletely understood. Here, we combine structural models of myosin from multiple stages of its chemomechanical cycle, exome sequencing data from two population cohorts of 60,706 and 42,930 individuals, and genetic and phenotypic data from 2,913 patients with HCM to identify regions of disease enrichment within β-cardiac myosin. We first developed computational models of the human β-cardiac myosin protein before and after the myosin power stroke. Then, using a spatial scan statistic modified to analyze genetic variation in protein 3D space, we found significant enrichment of disease-associated variants in the converter, a kinetic domain that transduces force from the catalytic domain to the lever arm to accomplish the power stroke. Focusing our analysis on surface-exposed residues, we identified a larger region significantly enriched for disease-associated variants that contains both the converter domain and residues on a single flat surface on the myosin head described as the myosin mesa. Notably, patients with HCM with variants in the enriched regions have earlier disease onset than patients who have HCM with variants elsewhere. Our study provides a model for integrating protein structure, large-scale genetic sequencing, and detailed phenotypic data to reveal insight into time-shifted protein structures and genetic disease.


Genetics in Medicine | 2018

Adaptation and validation of the ACMG/AMP variant classification framework for MYH7 -associated inherited cardiomyopathies: recommendations by ClinGen’s Inherited Cardiomyopathy Expert Panel

Melissa A. Kelly; Colleen Caleshu; Ana Morales; Jillian G Buchan; Zena Wolf; Steven M. Harrison; Stuart A. Cook; Mitchell W Dillon; John Garcia; Eden Haverfield; Jan D. H. Jongbloed; Daniela Macaya; Arjun K. Manrai; Kate M. Orland; Gabriele Richard; Katherine G. Spoonamore; Matthew Thomas; K Thomson; Lisa M. Vincent; Roddy Walsh; Hugh Watkins; Nicola Whiffin; Jodie Ingles; J. Peter van Tintelen; Christopher Semsarian; James S. Ware; Ray E. Hershberger; Birgit Funke

PurposeIntegrating genomic sequencing in clinical care requires standardization of variant interpretation practices. The Clinical Genome Resource has established expert panels to adapt the American College of Medical Genetics and Genomics/Association for Molecular Pathology classification framework for specific genes and diseases. The Cardiomyopathy Expert Panel selected MYH7, a key contributor to inherited cardiomyopathies, as a pilot gene to develop a broadly applicable approach.MethodsExpert revisions were tested with 60 variants using a structured double review by pairs of clinical and diagnostic laboratory experts. Final consensus rules were established via iterative discussions.ResultsAdjustments represented disease-/gene-informed specifications (12) or strength adjustments of existing rules (5). Nine rules were deemed not applicable. Key specifications included quantitative frameworks for minor allele frequency thresholds, the use of segregation data, and a semiquantitative approach to counting multiple independent variant occurrences where fully controlled case-control studies are lacking. Initial inter-expert classification concordance was 93%. Internal data from participating diagnostic laboratories changed the classification of 20% of the variants (n = 12), highlighting the critical importance of data sharing.ConclusionThese adapted rules provide increased specificity for use in MYH7-associated disorders in combination with expert review and clinical judgment and serve as a stepping stone for genes and disorders with similar genetic and clinical characteristics.


Trends in Cardiovascular Medicine | 2016

Interdisciplinary psychosocial care for families with inherited cardiovascular diseases

Colleen Caleshu; Katharine S. Edwards; Laura Yeates; Christopher Semsarian; Marco V. Perez; Euan A. Ashley; Christian Turner; Joshua W. Knowles; Jodie Ingles

Inherited cardiovascular diseases pose unique and complex psychosocial challenges for families, including coming to terms with life-long cardiac disease, risk of sudden death, grief related to the sudden death of a loved one, activity restrictions, and inheritance risk to other family members. Psychosocial factors impact not only mental health but also physical health and cooperation with clinical recommendations. We describe an interdisciplinary approach to the care of families with inherited cardiovascular disease, in which psychological care provided by specialized cardiac genetic counselors, nurses, and psychologists is embedded within the cardiovascular care team. We report illustrative cases and the supporting literature to demonstrate common scenarios, as well as practical guidance for clinicians working in the inherited cardiovascular disease setting.


JAMA Cardiology | 2017

Role of Genetic Testing in Inherited Cardiovascular Disease: A Review

Allison L. Cirino; Stephanie Harris; Neal K. Lakdawala; Michelle Michels; Iacopo Olivotto; Sharlene M. Day; Dominic Abrams; Philippe Charron; Colleen Caleshu; Christopher Semsarian; Jodie Ingles; Harry Rakowski; Daniel P. Judge; Carolyn Y. Ho

Importance Genetic testing is a valuable tool for managing inherited cardiovascular disease in patients and families, including hypertrophic, dilated, and arrhythmogenic cardiomyopathies and inherited arrhythmias. By identifying the molecular etiology of disease, genetic testing can improve diagnostic accuracy and refine family management. However, unique features associated with genetic testing affect the interpretation and application of results and differentiate it from traditional laboratory-based diagnostics. Clinicians and patients must have accurate and realistic expectations about the yield of genetic testing and its role in management. Familiarity with the rationale, implications, benefits, and limitations of genetic testing is essential to achieve the best possible outcomes. Observations Successfully incorporating genetic testing into clinical practice requires (1) recognizing when inherited cardiovascular disease may be present, (2) identifying appropriate individuals in the family for testing, (3) selecting the appropriate genetic test, (4) understanding the complexities of result interpretation, and (5) effectively communicating the results and implications to the patient and family. Obtaining a detailed family history is critical to identify families who will benefit from genetic testing, determine the best strategy, and interpret results. Instead of focusing on an individual patient, genetic testing requires consideration of the family as a unit. Consolidation of care in centers with a high level of expertise is recommended. Clinicians without expertise in genetic testing will benefit from establishing referral or consultative networks with experienced clinicans in specialized multidisciplinary clinics. Conclusions and Relevance Genetic testing provides a foundation for transitioning to more precise and individualized management. By distinguishing phenotypic subgroups, identifying disease mechanisms, and focusing family care, gene-based diagnosis can improve management. Successful integration of genetic testing into clinical practice requires understanding of the complexities of testing and effective communication of the implications to patients and families.

Collaboration


Dive into the Colleen Caleshu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carolyn Y. Ho

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michelle Michels

Erasmus University Rotterdam

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Allison L. Cirino

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge