Colleen P. MacMillan
Commonwealth Scientific and Industrial Research Organisation
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Colleen P. MacMillan.
Plant Journal | 2010
Colleen P. MacMillan; Shawn D. Mansfield; Zbigniew Stachurski; Robert Evans; Simon G. Southerton
The ancient cell adhesion fasciclin (FAS) domain is found in bacteria, fungi, algae, insects and animals, and occurs in a large family of fasciclin-like arabinogalactan proteins (FLAs) in higher plants. Functional roles for FAS-containing proteins have been determined for insects, algae and vertebrates; however, the biological functions of the various higher-plant FLAs are not clear. Expression of some FLAs has been correlated with the onset of secondary-wall cellulose synthesis in Arabidopsis stems, and also with wood formation in the stems and branches of trees, suggesting a biological role in plant stems. We examined whether FLAs contribute to plant stem biomechanics. Using phylogenetic, transcript abundance and promoter-GUS fusion analyses, we identified a conserved subset of single FAS domain FLAs (group A FLAs) in Eucalyptus and Arabidopsis that have specific and high transcript abundance in stems, particularly in stem cells undergoing secondary-wall deposition, and that the phylogenetic conservation appears to extend to other dicots and monocots. Gene-function analyses revealed that Arabidopsis T-DNA knockout double mutant stems had altered stem biomechanics with reduced tensile strength and a reduced tensile modulus of elasticity, as well as altered cell-wall architecture and composition, with increased cellulose microfibril angle and reduced arabinose, galactose and cellulose content. Using materials engineering concepts, we relate the effects of these FLAs on cell-wall composition with stem biomechanics. Our results suggest that a subset of single FAS domain FLAs contributes to plant stem strength by affecting cellulose deposition, and to the stem modulus of elasticity by affecting the integrity of the cell-wall matrix.
Plant Physiology | 2005
Colleen P. MacMillan; Cheryl Blundell; Rod W. King
Almost 50 years ago, it was shown that gibberellin (GA) applications caused flowering in species normally responding to cold (vernalization) and long day (LD). The implication that GAs are involved with vernalization and LD responses is examined here with the grass Lolium perenne. This species has an obligatory requirement for exposure to both vernalization and LD for its flowering (inflorescence initiation). Specific effects of vernalization or LD on GA synthesis, content, and action have been documented using four treatment pairs: nonvernalized or vernalized plants exposed to short days (SDs) or LDs. Irrespective of vernalization status, exposure to two LDs increased expression of L. perenne GA 20-oxidase-1 (LpGA20ox1), a critical GA biosynthetic gene, with endogenous GAs increasing by up to 5-fold in leaf and shoot. In parallel, LD led to degradation of a DELLA protein, SLENDER (within 48 h of LD or within 2 h of GA application). There was no effect on GA catabolism or abscisic acid content. Loss of SLENDER, which is a repressor of GA signaling, confirms the physiological relevance of increased GA content in LD. For flowering, applied GA replaced the need for LD but not that for vernalization. Thus, GAs may be an LD, leaf-sourced hormonal signal for flowering of L. perenne. By contrast, vernalization had little impact on GA or SLENDER levels or on SLENDER degradation following GA application. Thus, although vernalization and GA are both required for flowering of L. perenne, GA signaling is independent of vernalization that apparently impacts on unrelated processes.
New Phytologist | 2015
Colleen P. MacMillan; Lynette Taylor; Yingdong Bi; Simon G. Southerton; Robert Evans; Antanas V. Spokevicius
Fasciclin-like arabinogalactan protein (FLA) families have been identified and characterised in key plant species, with some members exhibiting functional specialization. Here we identify the FLA family of Eucalyptus grandis, and investigate the roles of three single-FAS domain FLAs, with particular focus on secondary cell-wall formation and wood properties. We use various in-silico approaches to identify and characterise E. grandis genome FLAs, and perform phylogenetic comparisons with other species. For three key FLAs, we perform functional testing including promoter-reporter and overexpression transgenic approaches using eucalypts, poplar and tobacco. Of the 18 eucalypt FLAs identified, several were specifically and highly expressed in stems. The specificity to stem xylem vessel and fibre development was demonstrated with EniFLA1promoter:GUS studies in several species. Testing of select eucalypt FLAs resulted in altered wood development and properties, for example 35S:EgrFLA2 led to a 3 degree reduction in cellulose microfibril angle in eucalypt xylem fibres, and 35S:EgrFLA3 to a reduction in tobacco stem flexural strength. These results indicate that the eucalypt FLA family contains diverse members, and particular members with single FAS domains that are functionally specialized for secondary cell wall growth and properties.
Molecular Plant | 2008
Rod W. King; Lewis N. Mander; Torben Asp; Colleen P. MacMillan; Cheryl Blundell; Lloyd T. Evans
Gibberellins (GAs) cause dramatic increases in plant height and a genetic block in the synthesis of GA(1) explains the dwarfing of Mendels pea. For flowering, it is GA(5) which is important in the long-day (LD) responsive grass, Lolium. As we show here, GA(1) and GA(4) are restricted in their effectiveness for flowering because they are deactivated by C-2 hydroxylation below the shoot apex. In contrast, GA(5) is effective because of its structural protection at C-2. Excised vegetative shoot tips rapidly degrade [14C]GA(1), [14C]GA(4), and [14C]GA(20) (>80% in 6 h), but not [14C]GA(5). Coincidentally, genes encoding two 2beta-oxidases and a putative 16-17-epoxidase were most expressed just below the shoot apex (<3 mm). Further down the immature stem (>4 mm), expression of these GA deactivation genes is reduced, so allowing GA(1) and GA(4) to promote sub-apical stem elongation. Subsequently, GA degradation declines in florally induced shoot tips and these GAs can become active for floral development. Structural changes which stabilize GA(4) confirm the link between florigenicity and restricted GA 2beta-hydroxylation (e.g. 2alpha-hydroxylation and C-2 di-methylation). Additionally, a 2-oxidase inhibitor (Trinexapac Ethyl) enhanced the activity of applied GA(4), as did limiting C-16,17 epoxidation in 16,17-dihydro GAs or after C-13 hydroxylation. Overall, deactivation of GA(1) and GA(4) just below the shoot apex effectively restricts their florigenicity in Lolium and, conversely, with GA(5), C-2 and C-13 protection against deactivation allows its high florigenicity. Speculatively, such differences in GA access to the shoot apex of grasses may be important for separating floral induction from inflorescence emergence and thus could influence their survival under conditions of herbivore predation.
Australian Forestry | 2010
Simon G. Southerton; Colleen P. MacMillan; Jc Bell; N Bhuiyan; Geoffrey M. Downes; Ic Ravenwood; Kr Joyce; Dean Williams; Br Thumma
Summary We used association studies to identify allelic variation in genes that influence wood fibre development in Eucalyptus nitens (Deane & Maiden). Genes selected for analysis were differentially expressed in wood with contrasting properties such as cellulose and lignin content, pulp yield and microfibril angle (MFA). Single nucleotide polymorphisms (SNPs) were identified by sequencing the candidate genes in a number of unrelated individuals. Selected SNPs were genotyped across 420 unrelated E. nitens trees from central Victorian populations and growing in a provenance trial at Meunna in north-western Tasmania. Significantly associated SNPs were genotyped across two other populations in northern Tasmania in order to validate associated SNPs. We have compiled a database of phenotypic information relating particularly to wood fibre properties for each individual in the association and validation populations. Associations between SNPs and wood properties were identified by comparing trait means in different SNP genotype classes. Several significantly associated SNPs identified in the Meunna population were validated in the other populations. The direction of the allele effect was reversed for two SNPs that were associated with kraft pulp yield. DNA markers identified in this research may be used to complement existing selection methods in breeding programs.
Functional Plant Biology | 2013
Colleen P. MacMillan; Phillip J O'Donnell; Anne-Marie Smit; Richard A. Evans; Zbigniew Stachurski; Kirk M. Torr; Mark West; Jacqueline Baltunis; Timothy J. Strabala
The natural trait variation in Arabidopsis thaliana (L.) Heynh. accessions is an important resource for understanding many biological processes but it is underexploited for wood-related properties. Twelve A. thaliana accessions from diverse geographical locations were examined for variation in secondary growth, biomechanical properties, cell wall glycan content, cellulose microfibril angle (MFA) and flowering time. The effect of daylength was also examined. Secondary growth in rosette and inflorescence stems was observed in all accessions. Organised cellulose microfibrils in inflorescence stems were found in plants grown under long and short days. A substantial range of phenotypic variation was found in biochemical and wood-related biophysical characteristics, particularly for tensile strength, tensile stiffness, MFA and some cell wall components. The four monosaccharides galactose, arabinose, rhamnose and fucose strongly correlated with each other as well as with tensile strength and MFA, consistent with mutations in arabinogalactan protein and fucosyl- and xyloglucan galactosyl-transferase genes that result in decreases in strength. Conversely, these variables showed negative correlations with lignin content. Our data support the notion that large-scale natural variation studies of wood-related biomechanical and biochemical properties of inflorescence stems will be useful for the identification of novel genes important for wood formation and quality, and therefore biomaterial and renewable biofuel production.
Plant Physiology | 2018
Brett Ford; Eloise Foo; Robert E. Sharwood; Miroslava Karafiátová; Jan Vrána; Colleen P. MacMillan; Ds Nichols; Burkhard Steuernagel; Cristobal Uauy; Jaroslav Doležel; Peter M. Chandler; Wolfgang Spielmeyer
In the wheat Rht18 semidwarf, increased expression of GA2oxA9 metabolizes GA12 precursor to inactive GA110, thereby reducing flux through the GA biosynthetic pathway, resulting in a lower content of bioactive GA and reduced growth. Semidwarfing genes have improved crop yield by reducing height, improving lodging resistance, and allowing plants to allocate more assimilates to grain growth. In wheat (Triticum aestivum), the Rht18 semidwarfing gene was identified and deployed in durum wheat before it was transferred into bread wheat, where it was shown to have agronomic potential. Rht18, a dominant and gibberellin (GA) responsive mutant, is genetically and functionally distinct from the widely used GA-insensitive semidwarfing genes Rht-B1b and Rht-D1b. In this study, the Rht18 gene was identified by mutagenizing the semidwarf durum cultivar Icaro (Rht18) and generating mutants with a range of tall phenotypes. Isolating and sequencing chromosome 6A of these “overgrowth” mutants showed that they contained independent mutations in the coding region of GA2oxA9. GA2oxA9 is predicted to encode a GA 2-oxidase that metabolizes GA biosynthetic intermediates into inactive products, effectively reducing the amount of bioactive GA (GA1). Functional analysis of the GA2oxA9 protein demonstrated that GA2oxA9 converts the intermediate GA12 to the inactive metabolite GA110. Furthermore, Rht18 showed higher expression of GA2oxA9 and lower GA content compared with its tall parent. These data indicate that the increased expression of GA2oxA9 in Rht18 results in a reduction of both bioactive GA content and plant height. This study describes a height-reducing mechanism that can generate new genetic diversity for semidwarfism in wheat by combining increased expression with mutations of specific amino acid residues in GA2oxA9.
BMC Genomics | 2017
Colleen P. MacMillan; Hannah Birke; Aaron Chuah; Elizabeth M. Brill; Yukiko Tsuji; John Ralph; Elizabeth S. Dennis; Danny J. Llewellyn; Filomena Pettolino
BackgroundKnowledge of plant secondary cell wall (SCW) regulation and deposition is mainly based on the Arabidopsis model of a ‘typical’ lignocellulosic SCW. However, SCWs in other plants can vary from this. The SCW of mature cotton seed fibres is highly cellulosic and lacks lignification whereas xylem SCWs are lignocellulosic. We used cotton as a model to study different SCWs and the expression of the genes involved in their formation via RNA deep sequencing and chemical analysis of stem and seed fibre.ResultsTranscriptome comparisons from cotton xylem and pith as well as from a developmental series of seed fibres revealed tissue-specific and developmentally regulated expression of several NAC transcription factors some of which are likely to be important as top tier regulators of SCW formation in xylem and/or seed fibre. A so far undescribed hierarchy was identified between the top tier NAC transcription factors SND1-like and NST1/2 in cotton. Key SCW MYB transcription factors, homologs of Arabidopsis MYB46/83, were practically absent in cotton stem xylem. Lack of expression of other lignin-specific MYBs in seed fibre relative to xylem could account for the lack of lignin deposition in seed fibre. Expression of a MYB103 homolog correlated with temporal expression of SCW CesAs and cellulose synthesis in seed fibres. FLAs were highly expressed and may be important structural components of seed fibre SCWs. Finally, we made the unexpected observation that cell walls in the pith of cotton stems contained lignin and had a higher S:G ratio than in xylem, despite that tissue’s lacking many of the gene transcripts normally associated with lignin biosynthesis.ConclusionsOur study in cotton confirmed some features of the currently accepted gene regulatory cascade for ‘typical’ plant SCWs, but also revealed substantial differences, especially with key downstream NACs and MYBs. The lignocellulosic SCW of cotton xylem appears to be achieved differently from that in Arabidopsis. Pith cell walls in cotton stems are compositionally very different from that reported for other plant species, including Arabidopsis. The current definition of a ‘typical’ primary or secondary cell wall might not be applicable to all cell types in all plant species.
Journal of Experimental Botany | 2017
J. Hyles; Sonia Vautrin; F. Pettolino; Colleen P. MacMillan; Zbigniew Stachurski; James Breen; Hélène Bergès; Thomas Wicker; Wolfgang Spielmeyer
Highlight Repeat-length variation in the cellulose synthase-like (Csl) gene is associated with increased lignification and strength of wheat stems. The predicted Csl gene co-locates with a previously reported tiller inhibition gene (tin).
Plant Direct | 2017
Dhika Amanda; Monika S. Doblin; Colleen P. MacMillan; Roberta Galletti; John F. Golz; Antony Bacic; Gwyneth C. Ingram; Kim L. Johnson
Abstract Axial growth in plant stems requires a fine balance between elongation and stem mechanical reinforcement to ensure mechanical stability. Strength is provided by the plant cell wall, the deposition of which must be coordinated with cell expansion and elongation to ensure that integrity is maintained during growth. Coordination of these processes is critical and yet poorly understood. The plant‐specific calpain, DEFECTIVE KERNEL1 (DEK1), plays a key role in growth coordination in leaves, yet its role in regulating stem growth has not been addressed. Using plants overexpressing the active CALPAIN domain of DEK1 (CALPAIN OE) and a DEK1 knockdown line (amiRNA‐DEK1), we undertook morphological, biochemical, biophysical, and microscopic analyses of mature inflorescence stems. We identify a novel role for DEK1 in the maintenance of cell wall integrity and coordination of growth during inflorescence stem development. CALPAIN OE plants are significantly reduced in stature and have short, thickened stems, while amiRNA‐DEK1 lines have weakened stems that are unable to stand upright. Microscopic analyses of the stems identify changes in cell size, shape and number, and differences in both primary and secondary cell wall thickness and composition. Taken together, our results suggest that DEK1 influences primary wall growth by indirectly regulating cellulose and pectin deposition. In addition, we observe changes in secondary cell walls that may compensate for altered primary cell wall composition. We propose that DEK1 activity is required for the coordination of stem strengthening with elongation during axial growth.
Collaboration
Dive into the Colleen P. MacMillan's collaboration.
Commonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputsCommonwealth Scientific and Industrial Research Organisation
View shared research outputs