Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colleen S. Curran is active.

Publication


Featured researches published by Colleen S. Curran.


Carcinogenesis | 2015

The effect of environmental chemicals on the tumor microenvironment

Stephanie C. Casey; Monica Vaccari; Fahd Al-Mulla; Rabeah Al-Temaimi; Amedeo Amedei; Mary Helen Barcellos-Hoff; Dustin G. Brown; Marion Chapellier; Joseph A. Christopher; Colleen S. Curran; Stefano Forte; Roslida A. Hamid; Petr Heneberg; Daniel C. Koch; P.K. Krishnakumar; Ezio Laconi; Veronique Maguer-Satta; Fabio Marongiu; Lorenzo Memeo; Chiara Mondello; Jayadev Raju; Jesse Roman; Rabindra Roy; Elizabeth P. Ryan; Sandra Ryeom; Hosni K. Salem; A.Ivana Scovassi; Neetu Singh; Laura Soucek; Louis Vermeulen

Potentially carcinogenic compounds may cause cancer through direct DNA damage or through indirect cellular or physiological effects. To study possible carcinogens, the fields of endocrinology, genetics, epigenetics, medicine, environmental health, toxicology, pharmacology and oncology must be considered. Disruptive chemicals may also contribute to multiple stages of tumor development through effects on the tumor microenvironment. In turn, the tumor microenvironment consists of a complex interaction among blood vessels that feed the tumor, the extracellular matrix that provides structural and biochemical support, signaling molecules that send messages and soluble factors such as cytokines. The tumor microenvironment also consists of many host cellular effectors including multipotent stromal cells/mesenchymal stem cells, fibroblasts, endothelial cell precursors, antigen-presenting cells, lymphocytes and innate immune cells. Carcinogens can influence the tumor microenvironment through effects on epithelial cells, the most common origin of cancer, as well as on stromal cells, extracellular matrix components and immune cells. Here, we review how environmental exposures can perturb the tumor microenvironment. We suggest a role for disrupting chemicals such as nickel chloride, Bisphenol A, butyltins, methylmercury and paraquat as well as more traditional carcinogens, such as radiation, and pharmaceuticals, such as diabetes medications, in the disruption of the tumor microenvironment. Further studies interrogating the role of chemicals and their mixtures in dose-dependent effects on the tumor microenvironment could have important general mechanistic implications for the etiology and prevention of tumorigenesis.


Matrix Biology | 2013

Breast tumor and stromal cell responses to TGF-β and hypoxia in matrix deposition

Colleen S. Curran; Patricia J. Keely

The components that comprise the extracellular matrix (ECM) are integral to normal tissue homeostasis as well as the development and progression of breast tumors. The secretion, construction, and remodeling of the ECM are each regulated by a complex interplay between tumor cells, fibroblasts and macrophages. Transforming growth factor-β (TGF-β) is an essential molecule in regulating the cellular production of ECM molecules and the adhesive interactions of cells with the ECM. Additionally, hypoxic cell signals, initiated by oxygen deprivation, additional metabolic factors or receptor activation, are associated with ECM formation and the progression of breast cancer. Both TGF-β and hypoxic cell signals are implicated in the functional and morphological changes of cancer-associated-fibroblasts and tumor-associated-macrophages. Moreover, the enhanced recruitment of tumor and stromal cells in response to hypoxia-induced chemokines leads to increased ECM deposition and remodeling, increased blood vessel formation, and enhanced tumor migration. Thus, elucidation of the collaborative networks between tumor and stromal cells in response to the combined signals of TGF-β and hypoxia may yield insight into treatment parameters that target both tumor and stromal cells.


International Immunology | 2011

Human eosinophils express RAGE, produce RAGE ligands, exhibit PKC-delta phosphorylation and enhanced viability in response to the RAGE ligand, S100B

Colleen S. Curran; Paul J. Bertics

This study tested the hypothesis that human eosinophils produce ligands for the receptor for advanced glycation end-products (RAGE), express RAGE and exhibit RAGE-mediated responses. In examining our microarray data, we identified the presence of RAGE and RAGE ligand (S100A4, S100A6, S100A8, S100A9, S100A11, S100P, HMGB1) transcripts. Expression of eosinophil RAGE mRNA was also compared with a known positive control and further assessed via bioinformatics and sequence analysis of RAGE cDNA. Positive and negative controls were used to identify RAGE, S100A8 and S100A9 protein in human primary eosinophils. Immunoblot assessment of eosinophils treated with cytokines (IL-5 or granulocyte macrophage colony-stimulating factor) indicated an up-regulation of S100A8 and S100A9 production, whereas co-treatment of eosinophils with a RAGE ligand and cytokines displayed a down-regulation in the levels of RAGE. Analysis of eosinophil-conditioned media revealed that eosinophils are capable of releasing RAGE, S100A8 and S100A9. To test the eosinophil response to RAGE activation, the most well-characterized RAGE ligand, S100B, was examined. Treatment of eosinophils with S100B resulted in RAGE-mediated PKC-delta phosphorylation, a 3-fold dose-dependent increase in cell survival and an increase in the level of cellular RAGE. Combined, these studies reveal eosinophil expression of RAGE, RAGE ligands and RAGE-mediated responses. The expression of eosinophil RAGE, soluble RAGE and RAGE ligands may be pivotal to the functions of eosinophils in various human diseases involving RAGE and S100 ligands.


Journal of Immunology | 2011

GM-CSF production by glioblastoma cells has a functional role in eosinophil survival, activation and growth factor production for enhanced tumor cell proliferation

Colleen S. Curran; Michael D. Evans; Paul J. Bertics

Medicinal interventions of limited efficacy are currently available for the treatment of glioblastoma multiforme (GBM), the most common and lethal primary brain tumor in adults. The eosinophil is a pivotal immune cell in the pathobiology of atopic disease that is also found to accumulate in certain tumor tissues. Inverse associations between atopy and GBM risk suggest that the eosinophil may play a functional role in certain tumor immune responses. To assess the potential interactions between eosinophils and GBM, we cultured human primary blood eosinophils with two separate human GBM-derived cell lines (A172, U87-MG) or conditioned media generated in the presence or absence of TNF-α. Results demonstrated differential eosinophil adhesion and increased survival in response to coculture with GBM cell lines. Eosinophil responses to GBM cell line-conditioned media included increased survival, activation, CD11b expression, and S100A9 release. Addition of GM-CSF neutralizing Abs to GBM cell cultures or conditioned media reduced eosinophil adhesion, survival, and activation, linking tumor cell-derived GM-CSF to the functions of eosinophils in the tumor microenvironment. Dexamethasone, which has been reported to inhibit eosinophil recruitment and shrink GBM lesions on contrast-enhanced scans, reduced the production of tumor cell-derived GM-CSF. Furthermore, culture of GBM cells in eosinophil-conditioned media increased tumor cell viability, and generation of eosinophil-conditioned media in the presence of GM-CSF enhanced the effect. These data support the idea of a paracrine loop between GM-CSF–producing tumors and eosinophil-derived growth factors in tumor promotion/progression.


Journal of Neuroinflammation | 2012

Eosinophils in glioblastoma biology

Colleen S. Curran; Paul J. Bertics

Glioblastoma multiforme (GBM) is the most common primary brain tumor in adults. The development of this malignant glial lesion involves a multi-faceted process that results in a loss of genetic or epigenetic gene control, un-regulated cell growth, and immune tolerance. Of interest, atopic diseases are characterized by a lack of immune tolerance and are inversely associated with glioma risk. One cell type that is an established effector cell in the pathobiology of atopic disease is the eosinophil. In response to various stimuli, the eosinophil is able to produce cytotoxic granules, neuromediators, and pro-inflammatory cytokines as well as pro-fibrotic and angiogenic factors involved in pathogen clearance and tissue remodeling and repair. These various biological properties reveal that the eosinophil is a key immunoregulatory cell capable of influencing the activity of both innate and adaptive immune responses. Of central importance to this report is the observation that eosinophil migration to the brain occurs in response to traumatic brain injury and following certain immunotherapeutic treatments for GBM. Although eosinophils have been identified in various central nervous system pathologies, and are known to operate in wound/repair and tumorstatic models, the potential roles of eosinophils in GBM development and the tumor immunological response are only beginning to be recognized and are therefore the subject of the present review.


Journal of Interferon and Cytokine Research | 2012

Lactoferrin Regulates an Axis Involving CD11b and CD49d Integrins and the Chemokines MIP-1α and MCP-1 in GM-CSF-Treated Human Primary Eosinophils

Colleen S. Curran; Paul J. Bertics

Eosinophils are multifunctional immune cells that contribute to innate and adaptive immune/repair responses. Lactoferrin (LF) is an iron-binding protein indicated to alter cell adhesion and immune function by receptor-mediated interactions or by participating in redox mechanisms. The eosinophil adhesion molecules, αMβ2 and α4β1, are differentially expressed following exposure to the cytokine granulocyte-macrophage colony-stimulating factor (GM-CSF) and various redox agents. We hypothesized that LF can alter the function and production of proteins involved in adhesion/migration. Utilizing eosinophil peroxidase activity or fluorescent labeling adhesion assays, LF reduced GM-CSF-induced eosinophil adhesion in the presence of fibronectin or vascular adhesion molecule-1 compared with GM-CSF treatment alone. Flow cytometric analysis of eosinophil αM (CD11b) and α4 (CD49d) integrins revealed that cotreatments (24 h) with LF plus GM-CSF induced a significant increase in CD11b compared with control and GM-CSF treatments but a significant decrease in CD49d compared with control and GM-CSF treatments. These changes in CD11b and CD49d levels were significantly correlated with the increased production of chemokines (macrophage inflammatory Protein-1α, monocyte chemotactic protein-1) and an identified increase in S100A9 production. Thus, LF release at sites of inflammation may alter eosinophil recruitment/activation and possibly the progression of diseases such as cancer and asthma where significant eosinophil influx has been described.


American Journal of Respiratory Cell and Molecular Biology | 2014

LPS modulates rhinovirus-induced chemokine secretion in monocytes and macrophages.

Maya R. Karta; Monica L. Gavala; Colleen S. Curran; Lisa E. Wickert; Patricia J. Keely; James E. Gern; Paul J. Bertics

Recent studies suggest that both bacteria and rhinoviruses (RVs) contribute to asthma exacerbations. We hypothesized that bacteria might alter antiviral responses early in the course of infection by modifying monocyte-lineage chemokine responses to RV infection. To test this hypothesis, human blood monocytes or bronchoalveolar lavage (BAL) macrophages were treated with RV types A016, B014, A001, and/or A002 in the presence or absence of LPS, and secretion of chemokines (CXCL10, CXCL11, CCL2, and CCL8) and IFN-α was measured by ELISA. Treatment with RV alone induced blood monocytes and BAL macrophages to secrete CXCL10, CXCL11, CCL2, and CCL8. Pretreatment with LPS significantly attenuated RV-induced CXCL10, CXCL11, and CCL8 secretion by 68-99.9% on average (P < 0.0001, P < 0.004, and P < 0.002, respectively), but did not inhibit RV-induced CCL2 from blood monocytes. Similarly, LPS inhibited RV-induced CXCL10 and CXCL11 secretion by over 88% on average from BAL macrophages (P < 0.002 and P < 0.0001, respectively). Furthermore, LPS inhibited RV-induced signal transducer and activator of transcription 1 phosphorylation (P < 0.05), as determined by immunoblotting, yet augmented RV-induced IFN-α secretion (P < 0.05), and did not diminish expression of RV target receptors, as measured by flow cytometry. In summary, major and minor group RVs strongly induce chemokine expression and IFN-α from monocytic cells. The bacterial product, LPS, specifically inhibits monocyte and macrophage secretion of RV-induced CXCL10 and CXCL11, but not other highly induced chemokines or IFN-α. These effects suggest that airway bacteria could modulate the pattern of virus-induced cell recruitment and inflammation in the airways.


Methods of Molecular Biology | 2014

Human Eosinophil Adhesion and Receptor Expression

Colleen S. Curran

Eosinophils migrate from the bone marrow in response to cytokines and chemokines which induce the expression and activation of adhesion receptors. In understanding the recruitment of eosinophils, protocols to identify eosinophil adhesion and receptor expression have been identified. In this summary, the eosinophil peroxidase and fluorescent labeling assays are described as measurements of indirect and direct eosinophil adhesion, respectively. Additional protocols that identify eosinophil receptor expression via immunofluorescent microscopy and flow cytometry are also described.


Environmental Toxicology and Pharmacology | 2015

Collagen density regulates xenobiotic and hypoxic response of mammary epithelial cells

Colleen S. Curran; Esteban R. Carrillo; Suzanne M. Ponik; Patricia J. Keely

Breast density, where collagen I is the dominant component, is a significant breast cancer risk factor. Cell surface integrins interact with collagen, activate focal adhesion kinase (FAK), and downstream cell signals associated with xenobiotics (AhR, ARNT) and hypoxia (HIF-1α, ARNT). We examined if mammary cells cultured in high density (HD) or low density (LD) collagen gels affected xenobiotic or hypoxic responses. ARNT production was significantly reduced by HD culture and in response to a FAK inhibitor. Consistent with a decrease in ARNT, AhR and HIF-1α reporter activation and VEGF production was lower in HD compared to LD. However, P450 production was enhanced in HD and induced by AhR and HIF-1α agonists, possibly in response to increased NF-κB activaton. Thus, collagen density differentially regulates downstream cell signals of AhR and HIF-1α by modulating the activity of FAK, the release of NF-κB transcriptional factors, and the levels of ARNT.


Cellular Immunology | 2006

Lactoferrin activates macrophages via TLR4-dependent and -independent signaling pathways.

Colleen S. Curran; Karen P. Demick; John M. Mansfield

Collaboration


Dive into the Colleen S. Curran's collaboration.

Top Co-Authors

Avatar

Paul J. Bertics

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Patricia J. Keely

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

James E. Gern

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Lisa E. Wickert

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Maya R. Karta

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Monica L. Gavala

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dustin G. Brown

Colorado State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Esteban R. Carrillo

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge