Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Colm O'Dushlaine is active.

Publication


Featured researches published by Colm O'Dushlaine.


Nature | 2009

Common polygenic variation contributes to risk of schizophrenia and bipolar disorder

Shaun Purcell; Naomi R. Wray; Jennifer Stone; Peter M. Visscher; Michael Conlon O'Donovan; Patrick F. Sullivan; Pamela Sklar; Douglas M. Ruderfer; Andrew McQuillin; Derek W. Morris; Colm O’Dushlaine; Aiden Corvin; Peter Holmans; Michael C. O’Donovan; Stuart MacGregor; Hugh Gurling; Douglas Blackwood; Nicholas John Craddock; Michael Gill; Christina M. Hultman; George Kirov; Paul Lichtenstein; Walter J. Muir; Michael John Owen; Carlos N. Pato; Edward M. Scolnick; David St Clair; Nigel Melville Williams; Lyudmila Georgieva; Ivan Nikolov

Schizophrenia is a severe mental disorder with a lifetime risk of about 1%, characterized by hallucinations, delusions and cognitive deficits, with heritability estimated at up to 80%. We performed a genome-wide association study of 3,322 European individuals with schizophrenia and 3,587 controls. Here we show, using two analytic approaches, the extent to which common genetic variation underlies the risk of schizophrenia. First, we implicate the major histocompatibility complex. Second, we provide molecular genetic evidence for a substantial polygenic component to the risk of schizophrenia involving thousands of common alleles of very small effect. We show that this component also contributes to the risk of bipolar disorder, but not to several non-psychiatric diseases.


Nature | 2014

A polygenic burden of rare disruptive mutations in schizophrenia

Shaun Purcell; Jennifer L. Moran; Menachem Fromer; Douglas M. Ruderfer; Nadia Solovieff; Panos Roussos; Colm O'Dushlaine; K D Chambert; Sarah E. Bergen; Anna K. Kähler; Laramie Duncan; Eli A. Stahl; Giulio Genovese; Esperanza Fernández; Mark O. Collins; Noboru H. Komiyama; Jyoti S. Choudhary; Patrik K. E. Magnusson; Eric Banks; Khalid Shakir; Kiran Garimella; Timothy Fennell; Mark DePristo; Seth G. N. Grant; Stephen J. Haggarty; Stacey Gabriel; Edward M. Scolnick; Eric S. Lander; Christina M. Hultman; Patrick F. Sullivan

Schizophrenia is a common disease with a complex aetiology, probably involving multiple and heterogeneous genetic factors. Here, by analysing the exome sequences of 2,536 schizophrenia cases and 2,543 controls, we demonstrate a polygenic burden primarily arising from rare (less than 1 in 10,000), disruptive mutations distributed across many genes. Particularly enriched gene sets include the voltage-gated calcium ion channel and the signalling complex formed by the activity-regulated cytoskeleton-associated scaffold protein (ARC) of the postsynaptic density, sets previously implicated by genome-wide association and copy-number variation studies. Similar to reports in autism, targets of the fragile X mental retardation protein (FMRP, product of FMR1) are enriched for case mutations. No individual gene-based test achieves significance after correction for multiple testing and we do not detect any alleles of moderately low frequency (approximately 0.5 to 1 per cent) and moderately large effect. Taken together, these data suggest that population-based exome sequencing can discover risk alleles and complements established gene-mapping paradigms in neuropsychiatric disease.


Molecular Psychiatry | 2011

Molecular pathways involved in neuronal cell adhesion and membrane scaffolding contribute to schizophrenia and bipolar disorder susceptibility.

Colm O'Dushlaine; Elaine Kenny; Elizabeth A. Heron; Gary Donohoe; Michael Gill; Derek W. Morris; Aiden Corvin

Susceptibility to schizophrenia and bipolar disorder may involve a substantial, shared contribution from thousands of common genetic variants, each of small effect. Identifying whether risk variants map to specific molecular pathways is potentially biologically informative. We report a molecular pathway analysis using the single-nucleotide polymorphism (SNP) ratio test, which compares the ratio of nominally significant (P<0.05) to nonsignificant SNPs in a given pathway to identify the ‘enrichment’ for association signals. We applied this approach to the discovery (the International Schizophrenia Consortium (n=6909)) and validation (Genetic Association Information Network (n=2729)) of schizophrenia genome-wide association study (GWAS) data sets. We investigated each of the 212 experimentally validated pathways described in the Kyoto Encyclopaedia of Genes and Genomes in the discovery sample. Nominally significant pathways were tested in the validation sample, and five pathways were found to be significant (P=0.03–0.001); only the cell adhesion molecule (CAM) pathway withstood conservative correction for multiple testing. Interestingly, this pathway was also significantly associated with bipolar disorder (Wellcome Trust Case Control Consortium (n=4847)) (P=0.01). At a gene level, CAM genes associated in all three samples (NRXN1 and CNTNAP2), which were previously implicated in specific language disorder, autism and schizophrenia. The CAM pathway functions in neuronal cell adhesion, which is critical for synaptic formation and normal cell signaling. Similar pathways have also emerged from a pathway analysis of autism, suggesting that mechanisms involved in neuronal cell adhesion may contribute broadly to neurodevelopmental psychiatric phenotypes.


Molecular Psychiatry | 2012

Genome-wide association study in a Swedish population yields support for greater CNV and MHC involvement in schizophrenia compared with bipolar disorder

Sarah E. Bergen; Colm O'Dushlaine; Stephan Ripke; Phil H. Lee; Douglas M. Ruderfer; Susanne Akterin; Jennifer L. Moran; Robert E. Handsaker; Lena Backlund; Urban Ösby; Steven A. McCarroll; Mikael Landén; Edward M. Scolnick; Patrik K. E. Magnusson; Paul Lichtenstein; Christina M. Hultman; Shaun Purcell; Pamela Sklar; Patrick F. Sullivan

Schizophrenia (SCZ) and bipolar disorder (BD) are highly heritable psychiatric disorders with overlapping susceptibility loci and symptomatology. We conducted a genome-wide association study (GWAS) of these disorders in a large Swedish sample. We report a new and independent case–control analysis of 1507 SCZ cases, 836 BD cases and 2093 controls. No single-nucleotide polymorphisms (SNPs) achieved significance in these new samples; however, combining new and previously reported SCZ samples (2111 SCZ and 2535 controls) revealed a genome-wide significant association in the major histocompatibility complex (MHC) region (rs886424, P=4.54 × 10−8). Imputation using multiple reference panels and meta-analysis with the Psychiatric Genomics Consortium SCZ results underscored the broad, significant association in the MHC region in the full SCZ sample. We evaluated the role of copy number variants (CNVs) in these subjects. As in prior reports, deletions were enriched in SCZ, but not BD cases compared with controls. Singleton deletions were more frequent in both case groups compared with controls (SCZ: P=0.003, BD: P=0.013), whereas the largest CNVs (>500 kb) were significantly enriched only in SCZ cases (P=0.0035). Two CNVs with previously reported SCZ associations were also overrepresented in this SCZ sample: 16p11.2 duplications (P=0.0035) and 22q11 deletions (P=0.03). These results reinforce prior reports of significant MHC and CNV associations in SCZ, but not BD.


The New England Journal of Medicine | 2016

Inactivating Variants in ANGPTL4 and Risk of Coronary Artery Disease

Frederick E. Dewey; Gusarova; Colm O'Dushlaine; Omri Gottesman; Trejos J; Hunt C; Van Hout Cv; Lukas Habegger; David R. Buckler; Lai Km; Joseph B. Leader; Michael F. Murray; Ritchie; Kirchner Hl; David H. Ledbetter; John S. Penn; Alexander E. Lopez; Ingrid B. Borecki; John D. Overton; Jeffrey G. Reid; David J. Carey; Andrew J. Murphy; George D. Yancopoulos; Aris Baras; Jesper Gromada; Alan R. Shuldiner

BACKGROUND Higher-than-normal levels of circulating triglycerides are a risk factor for ischemic cardiovascular disease. Activation of lipoprotein lipase, an enzyme that is inhibited by angiopoietin-like 4 (ANGPTL4), has been shown to reduce levels of circulating triglycerides. METHODS We sequenced the exons of ANGPTL4 in samples obtain from 42,930 participants of predominantly European ancestry in the DiscovEHR human genetics study. We performed tests of association between lipid levels and the missense E40K variant (which has been associated with reduced plasma triglyceride levels) and other inactivating mutations. We then tested for associations between coronary artery disease and the E40K variant and other inactivating mutations in 10,552 participants with coronary artery disease and 29,223 controls. We also tested the effect of a human monoclonal antibody against ANGPTL4 on lipid levels in mice and monkeys. RESULTS We identified 1661 heterozygotes and 17 homozygotes for the E40K variant and 75 participants who had 13 other monoallelic inactivating mutations in ANGPTL4. The levels of triglycerides were 13% lower and the levels of high-density lipoprotein (HDL) cholesterol were 7% higher among carriers of the E40K variant than among noncarriers. Carriers of the E40K variant were also significantly less likely than noncarriers to have coronary artery disease (odds ratio, 0.81; 95% confidence interval, 0.70 to 0.92; P=0.002). K40 homozygotes had markedly lower levels of triglycerides and higher levels of HDL cholesterol than did heterozygotes. Carriers of other inactivating mutations also had lower triglyceride levels and higher HDL cholesterol levels and were less likely to have coronary artery disease than were noncarriers. Monoclonal antibody inhibition of Angptl4 in mice and monkeys reduced triglyceride levels. CONCLUSIONS Carriers of E40K and other inactivating mutations in ANGPTL4 had lower levels of triglycerides and a lower risk of coronary artery disease than did noncarriers. The inhibition of Angptl4 in mice and monkeys also resulted in corresponding reductions in these values. (Funded by Regeneron Pharmaceuticals.).


Molecular Psychiatry | 2014

Copy number variation in schizophrenia in Sweden

Jin P. Szatkiewicz; Colm O'Dushlaine; Guanhua Chen; Jennifer L. Moran; Benjamin M. Neale; Menachem Fromer; Douglas M. Ruderfer; Susanne Akterin; Sarah E. Bergen; Anna K. Kähler; Patrik K. E. Magnusson; Y. Kim; James J. Crowley; Elliott Rees; George Kirov; Michael Conlon O'Donovan; Michael John Owen; James Tynan Rhys Walters; Edward M. Scolnick; Pamela Sklar; Shaun Purcell; Christina M. Hultman; Steven A. McCarroll; Patrick F. Sullivan

Schizophrenia (SCZ) is a highly heritable neuropsychiatric disorder of complex genetic etiology. Previous genome-wide surveys have revealed a greater burden of large, rare copy number variations (CNVs) in SCZ cases and identified multiple rare recurrent CNVs that increase risk of SCZ although with incomplete penetrance and pleiotropic effects. Identification of additional recurrent CNVs and biological pathways enriched for SCZ CNVs requires greater sample sizes. We conducted a genome-wide survey for CNVs associated with SCZ using a Swedish national sample (4719 cases and 5917 controls). High-confidence CNV calls were generated using genotyping array intensity data, and their effect on risk of SCZ was measured. Our data confirm increased burden of large, rare CNVs in SCZ cases as well as significant associations for recurrent 16p11.2 duplications, 22q11.2 deletions and 3q29 deletions. We report a novel association for 17q12 duplications (odds ratio=4.16, P=0.018), previously associated with autism and mental retardation but not SCZ. Intriguingly, gene set association analyses implicate biological pathways previously associated with SCZ through common variation and exome sequencing (calcium channel signaling and binding partners of the fragile X mental retardation protein). We found significantly increased burden of the largest CNVs (>500 kb) in genes present in the postsynaptic density, in genomic regions implicated via SCZ genome-wide association studies and in gene products localized to mitochondria and cytoplasm. Our findings suggest that multiple lines of genomic inquiry—genome-wide screens for CNVs, common variation and exonic variation—are converging on similar sets of pathways and/or genes.


Bioinformatics | 2009

The SNP ratio test

Colm O'Dushlaine; Elaine Kenny; Elizabeth A. Heron; Ricardo Segurado; Michael Gill; Derek W. Morris; Aiden Corvin

UNLABELLED We present a tool that assesses the enrichment of significant associations from genome-wide association studies (GWAS) in a pathway context. The SNP ratio test (SRT) compares the proportion of significant to all SNPs within genes that are part of a pathway and computes an empirical P-value based on comparisons to ratios in datasets where the assignment of case/control status has been randomized. We applied the SRT to a Parkinsons disease GWAS dataset, using the KEGG database, revealing significance for Parkinsons disease and related pathways. AVAILABILITY https://sourceforge.net/projects/snpratiotest/


American Journal of Medical Genetics | 2008

Conduct Disorder and ADHD: Evaluation of Conduct Problems as a Categorical and Quantitative Trait in the International Multicentre ADHD Genetics Study

Richard Anney; Jessica Lasky-Su; Colm O'Dushlaine; Elaine Kenny; Benjamin M. Neale; Aisling Mulligan; Barbara Franke; Kaixin Zhou; Wai Chen; Hanna Christiansen; Alejandro Arias-Vásquez; Tobias Banaschewski; Jan K. Buitelaar; Richard P. Ebstein; Ana Miranda; Fernando Mulas; Robert D. Oades; Herbert Roeyers; Aribert Rothenberger; Joseph A. Sergeant; Edmund Sonuga-Barke; H.-C. Steinhausen; Philip Asherson; Stephen V. Faraone; Michael Gill

Attention‐deficit/hyperactivity disorder (ADHD) is typically characterized by inattention, excessive motor activity, impulsivity, and distractibility. Individuals with ADHD have significant impairment in family and peer relations, academic functioning, and show high co‐morbidity with a wide range of psychiatric disorders including oppositional defiant disorder (ODD), conduct disorder (CD), anxiety disorder, depression, substance abuse, and pervasive developmental disorder (PDD). Family studies suggest that ADHD + CD represents a specific subtype of the ADHD disorder with familial risk factors only partly overlapping with those of ADHD alone. We performed a hypothesis‐free analysis of the GAIN–ADHD sample to identify markers and genes important in the development of conduct problems in a European cohort of individuals with ADHD. Using the Family‐Based Association Test (FBAT) package we examined three measures of conduct problems in 1,043,963 autosomal markers. This study is part of a series of exploratory analyses to identify candidate genes that may be important in ADHD and ADHD‐related traits, such as conduct problems. We did not find genome‐wide statistical significance (P < 5 × 10−7) for any of the tested markers and the three conduct problem traits. Fifty‐four markers reached strong GWA signals (P < 10−5). We discuss these findings in the context of putative candidate genes and the implications of these findings in the understanding of the etiology of ADHD + CD. We aimed to achieve insight into the genetic etiology of a trait using a hypothesis‐free study design and were able to identify a number of biologically interesting markers and genes for follow‐up studies.


Molecular Psychiatry | 2014

Evidence that duplications of 22q11.2 protect against schizophrenia

Elliott Rees; George Kirov; Alan R. Sanders; James Tynan Rhys Walters; Jianxin Shi; Jin P. Szatkiewicz; Colm O'Dushlaine; Alexander Richards; Elaine K. Green; Ian Richard Jones; Geraint Davies; Sophie E. Legge; Jennifer L. Moran; Carlos N. Pato; Michele T. Pato; Giulio Genovese; Douglas F. Levinson; Jubao Duan; Winton Moy; Harald H H Göring; Derek W. Morris; Paul Cormican; Kenneth S. Kendler; Francis O'Neill; Brien P. Riley; Michael Gill; Aiden Corvin; Nicholas John Craddock; Pamela Sklar; Christina M. Hultman

A number of large, rare copy number variants (CNVs) are deleterious for neurodevelopmental disorders, but large, rare, protective CNVs have not been reported for such phenotypes. Here we show in a CNV analysis of 47 005 individuals, the largest CNV analysis of schizophrenia to date, that large duplications (1.5–3.0 Mb) at 22q11.2—the reciprocal of the well-known, risk-inducing deletion of this locus—are substantially less common in schizophrenia cases than in the general population (0.014% vs 0.085%, OR=0.17, P=0.00086). 22q11.2 duplications represent the first putative protective mutation for schizophrenia.


Molecular Psychiatry | 2015

Characterization of bipolar disorder patient-specific induced pluripotent stem cells from a family reveals neurodevelopmental and mRNA expression abnormalities

Jon M. Madison; Fen Zhou; A Nigam; A Hussain; Douglas Barker; Ralda Nehme; K van der Ven; J Hsu; Pavlina Wolf; M Fleishman; Colm O'Dushlaine; Samuel A. Rose; K D Chambert; Frank H. Lau; Tim Ahfeldt; E H Rueckert; Steven D. Sheridan; Daniel M. Fass; James Nemesh; Thomas E. Mullen; Laurence Daheron; Steven A. McCarroll; Pamela Sklar; Roy H. Perlis; Stephen J. Haggarty

Bipolar disorder (BD) is a common neuropsychiatric disorder characterized by chronic recurrent episodes of depression and mania. Despite evidence for high heritability of BD, little is known about its underlying pathophysiology. To develop new tools for investigating the molecular and cellular basis of BD, we applied a family-based paradigm to derive and characterize a set of 12 induced pluripotent stem cell (iPSC) lines from a quartet consisting of two BD-affected brothers and their two unaffected parents. Initially, no significant phenotypic differences were observed between iPSCs derived from the different family members. However, upon directed neural differentiation, we observed that CXCR4 (CXC chemokine receptor-4) expressing central nervous system (CNS) neural progenitor cells (NPCs) from both BD patients compared with their unaffected parents exhibited multiple phenotypic differences at the level of neurogenesis and expression of genes critical for neuroplasticity, including WNT pathway components and ion channel subunits. Treatment of the CXCR4+ NPCs with a pharmacological inhibitor of glycogen synthase kinase 3, a known regulator of WNT signaling, was found to rescue a progenitor proliferation deficit in the BD patient NPCs. Taken together, these studies provide new cellular tools for dissecting the pathophysiology of BD and evidence for dysregulation of key pathways involved in neurodevelopment and neuroplasticity. Future generation of additional iPSCs following a family-based paradigm for modeling complex neuropsychiatric disorders in conjunction with in-depth phenotyping holds promise for providing insights into the pathophysiological substrates of BD and is likely to inform the development of targeted therapeutics for its treatment and ideally prevention.

Collaboration


Dive into the Colm O'Dushlaine's collaboration.

Top Co-Authors

Avatar

Derek W. Morris

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Pamela Sklar

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Patrick F. Sullivan

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar

Shaun Purcell

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas M. Ruderfer

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

Jin P. Szatkiewicz

University of North Carolina at Chapel Hill

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge