Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Connie J. Eaves is active.

Publication


Featured researches published by Connie J. Eaves.


Cancer Research | 2006

Cancer stem cells--perspectives on current status and future directions: AACR Workshop on cancer stem cells.

Michael F. Clarke; John E. Dick; Peter Dirks; Connie J. Eaves; Catriona Jamieson; D. Leanne Jones; Jane E. Visvader; Irving L. Weissman; Geoffrey M. Wahl

A workshop was convened by the AACR to discuss the rapidly emerging cancer stem cell model for tumor development and progression. The meeting participants were charged with evaluating data suggesting that cancers develop from a small subset of cells with self-renewal properties analogous to organ


Nature | 2006

Purification and unique properties of mammary epithelial stem cells.

John Stingl; Peter Eirew; Ian Ricketson; Mark Shackleton; François Vaillant; David Choi; Haiyan I. Li; Connie J. Eaves

Elucidation of the cellular and molecular mechanisms that maintain mammary epithelial tissue integrity is of broad interest and paramount to the design of more effective treatments for breast cancer. Evidence from both in vitro and in vivo experiments suggests that mammary cell differentiation is a hierarchical process originating in an uncommitted stem cell with self-renewal potential. However, analysis of the properties and regulation of mammary stem cells has been limited by a lack of methods for their prospective isolation. Here we report the use of multi-parameter cell sorting and limiting dilution transplant analysis to demonstrate the purification of a rare subset of adult mouse mammary cells that are able individually to regenerate an entire mammary gland within 6 weeks in vivo while simultaneously executing up to ten symmetrical self-renewal divisions. These mammary stem cells are phenotypically distinct from and give rise to mammary epithelial progenitor cells that produce adherent colonies in vitro. The mammary stem cells are also a rapidly cycling population in the normal adult and have molecular features indicative of a basal position in the mammary epithelium.


Nature | 2012

The clonal and mutational evolution spectrum of primary triple-negative breast cancers.

Sohrab P. Shah; Andrew Roth; Rodrigo Goya; Arusha Oloumi; Gavin Ha; Yongjun Zhao; Gulisa Turashvili; Jiarui Ding; Kane Tse; Gholamreza Haffari; Ali Bashashati; Leah M Prentice; Jaswinder Khattra; Angela Burleigh; Damian Yap; Virginie Bernard; Andrew McPherson; Karey Shumansky; Anamaria Crisan; Ryan Giuliany; Alireza Heravi-Moussavi; Jamie Rosner; Daniel Lai; Inanc Birol; Richard Varhol; Angela Tam; Noreen Dhalla; Thomas Zeng; Kevin Ma; Simon K. Chan

Primary triple-negative breast cancers (TNBCs), a tumour type defined by lack of oestrogen receptor, progesterone receptor and ERBB2 gene amplification, represent approximately 16% of all breast cancers. Here we show in 104 TNBC cases that at the time of diagnosis these cancers exhibit a wide and continuous spectrum of genomic evolution, with some having only a handful of coding somatic aberrations in a few pathways, whereas others contain hundreds of coding somatic mutations. High-throughput RNA sequencing (RNA-seq) revealed that only approximately 36% of mutations are expressed. Using deep re-sequencing measurements of allelic abundance for 2,414 somatic mutations, we determine for the first time—to our knowledge—in an epithelial tumour subtype, the relative abundance of clonal frequencies among cases representative of the population. We show that TNBCs vary widely in their clonal frequencies at the time of diagnosis, with the basal subtype of TNBC showing more variation than non-basal TNBC. Although p53 (also known as TP53), PIK3CA and PTEN somatic mutations seem to be clonally dominant compared to other genes, in some tumours their clonal frequencies are incompatible with founder status. Mutations in cytoskeletal, cell shape and motility proteins occurred at lower clonal frequencies, suggesting that they occurred later during tumour progression. Taken together, our results show that understanding the biology and therapeutic responses of patients with TNBC will require the determination of individual tumour clonal genotypes.


Genome Research | 2008

Application of massively parallel sequencing to microRNA profiling and discovery in human embryonic stem cells

Ryan D. Morin; Michael D. O'Connor; Malachi Griffith; Florian Kuchenbauer; Allen Delaney; Anna-Liisa Prabhu; Yongjun Zhao; Helen McDonald; Thomas Zeng; Martin Hirst; Connie J. Eaves; Marco A. Marra

MicroRNAs (miRNAs) are emerging as important, albeit poorly characterized, regulators of biological processes. Key to further elucidation of their roles is the generation of more complete lists of their numbers and expression changes in different cell states. Here, we report a new method for surveying the expression of small RNAs, including microRNAs, using Illumina sequencing technology. We also present a set of methods for annotating sequences deriving from known miRNAs, identifying variability in mature miRNA sequences, and identifying sequences belonging to previously unidentified miRNA genes. Application of this approach to RNA from human embryonic stem cells obtained before and after their differentiation into embryoid bodies revealed the sequences and expression levels of 334 known plus 104 novel miRNA genes. One hundred seventy-one known and 23 novel microRNA sequences exhibited significant expression differences between these two developmental states. Owing to the increased number of sequence reads, these libraries represent the deepest miRNA sampling to date, spanning nearly six orders of magnitude of expression. The predicted targets of those miRNAs enriched in either sample shared common features. Included among the high-ranked predicted gene targets are those implicated in differentiation, cell cycle control, programmed cell death, and transcriptional regulation.


Nature Reviews Cancer | 2012

Cancer stem cells: an evolving concept

Long V. Nguyen; Robert Vanner; Peter Dirks; Connie J. Eaves

The cancer stem cell (CSC) concept derives from the fact that cancers are dysregulated tissue clones whose continued propagation is vested in a biologically distinct subset of cells that are typically rare. This idea is not new, but has recently gained prominence because of advances in defining normal tissue hierarchies, a greater appreciation of the multistep nature of oncogenesis and improved methods to propagate primary human cancers in immunodeficient mice. As a result we have obtained new insights into why the CSC concept is not universally applicable, as well as a new basis for understanding the complex evolution, phenotypic heterogeneity and therapeutic challenges of many human cancers.


Cell Stem Cell | 2007

Long-Term Propagation of Distinct Hematopoietic Differentiation Programs In Vivo

Brad Dykstra; David G. Kent; Michelle Bowie; Lindsay McCaffrey; Melisa J. Hamilton; Kristin Lyons; Shang-Jung Lee; Ryan R. Brinkman; Connie J. Eaves

Heterogeneity in the differentiation behavior of hematopoietic stem cells is well documented but poorly understood. To investigate this question at a clonal level, we isolated a subpopulation of adult mouse bone marrow that is highly enriched for multilineage in vivo repopulating cells and transplanted these as single cells, or their short-term clonal progeny generated in vitro, into 352 recipients. Of the mice, 93 showed a donor-derived contribution to the circulating white blood cells for at least 4 months in one of four distinct patterns. Serial transplantation experiments indicated that two of the patterns were associated with extensive self-renewal of the original cell transplanted. However, within 4 days in vitro, the repopulation patterns subsequently obtained in vivo shifted in a clone-specific fashion to those with less myeloid contribution. Thus, primitive hematopoietic cells can maintain distinct repopulation properties upon serial transplantation in vivo, although these properties can also alter rapidly in vitro.


Nature Reviews Cancer | 2012

Cancer stem cell definitions and terminology: the devil is in the details

Peter Valent; Dominique Bonnet; Ruggero De Maria; Tsvee Lapidot; Mhairi Copland; Junia V. Melo; Christine Chomienne; Fumihiko Ishikawa; Jan Jacob Schuringa; Giorgio Stassi; Brian J. P. Huntly; Harald Herrmann; Jean Soulier; Alexander Roesch; G.J. Schuurhuis; Stefan Wöhrer; Michel Arock; Johannes Zuber; Sabine Cerny-Reiterer; Hans Erik Johnsen; Michael Andreeff; Connie J. Eaves

The cancer stem cell (CSC) concept has important therapeutic implications, but its investigation has been hampered both by a lack of consistency in the terms used for these cells and by how they are defined. Evidence of their heterogeneous origins, frequencies and their genomic, as well as their phenotypic and functional, properties has added to the confusion and has fuelled new ideas and controversies. Participants in The Year 2011 Working Conference on CSCs met to review these issues and to propose a conceptual and practical framework for CSC terminology. More precise reporting of the parameters that are used to identify CSCs and to attribute responses to them is also recommended as key to accelerating an understanding of their biology and developing more effective methods for their eradication in patients.


Breast Cancer Research and Treatment | 2001

Characterization of bipotent mammary epithelial progenitor cells in normal adult human breast tissue.

John Stingl; Connie J. Eaves; Iman Zandieh; Joanne T. Emerman

The purpose of the present study was to characterize primitive epithelial progenitor populations present in adult normal human mammary tissue using a combination of flow cytometry and in vitro colony assay procedures. Three types of human breast epithelial cell (HBEC) progenitors were identified: luminal-restricted, myoepithelial-restricted and bipotent progenitors. The first type expressed epithelial cell adhesion molecule (EpCAM), α6 integrin and MUC1 and generated colonies composed exclusively of cells positive for the luminal-associated markers keratin 8/18, keratin 19, EpCAM and MUC1. Bipotent progenitors produced colonies containing a central core of cells expressing luminal markers surrounded by keratin 14+ myoepithelial-like cells. Single cell cultures confirmed the bipotentiality of these progenitors. Their high expression of α6 integrin and low expression of MUC1 suggests a basal position of these cells in the mammary epithelium in vivo. Serial passage in vitro of an enriched population of bipotent progenitors demonstrated that only myoepithelial-restricted progenitors could be readily generated under the culture conditions used. These results support a hierarchical branching model of HBEC progenitor differentiation from a primitive uncommitted cell to luminal- and myoepithelial-restricted progenitors.


The New England Journal of Medicine | 1983

Long-Term Marrow Culture Reveals Chromosomally Normal Hematopoietic Progenitor Cells in Patients with Philadelphia Chromosome-Positive Chronic Myelogenous Leukemia

Laure Coulombel; Dagmar K. Kalousek; Connie J. Eaves; Chander M. Gupta; Allen C. Eaves

We found that when marrow cells from four patients with newly diagnosed Philadelphia chromosome-positive chronic myelogenous leukemia were maintained in culture for two to four weeks, a previously undetectable population of chromosomally normal hematopoietic cells (including erythroid, granulopoietic, and pluripotent progenitors) became readily demonstrable in three cases. Time-course studies showed that in such cultures the dominant Philadelphia chromosome-positive population rapidly disappeared, in contrast to coexisting chromosomally normal progenitors, which remained detectable for periods of two to three months. Long-term marrow cultures thus offer a new approach to the assessment of a suppressed but functionally intact population of chromosomally normal hematopoietic stem cells in patients with chronic myelogenous leukemia.


Leukemia | 2007

Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies.

Xiaoyan Jiang; Yun Zhao; Clayton A. Smith; M Gasparetto; Ali G. Turhan; Allen C. Eaves; Connie J. Eaves

The leukemic stem cells in patients with chronic myeloid leukemia (CML) are well known to be clinically resistant to conventional chemotherapy and may also be relatively resistant to BCR-ABL-targeted drugs. Here we show that the lesser effect of imatinib mesylate (IM) on the 3-week output of cells produced in vitro from lin−CD34+CD38− CML (stem) cells compared with cultures initiated with the CD38+ subset of lin−CD34+ cells is markedly enhanced (>10-fold) when conditions of reduced growth factor stimulation are used. Quantitative analysis of genes expressed in these different CML subsets revealed a differentiation-associated decrease in IL-3 and G-CSF transcripts, a much more profound decrease in expression of BCR-ABL than predicted by changes in BCR expression, decreasing expression of ABCB1/MDR and ABCG2 and increasing expression of OCT1. p210BCR-ABL and kinase activity were also higher in the lin−CD34+CD38− cells and formal evidence that increasing BCR-ABL expression decreases IM sensitivity was obtained from experiments with a cell line model. Nevertheless, within the entire CD34+ subset of CML cells, BCR-ABL expression was not strongly affected by changes in cell cycle status. Taken together, these results provide the first evidence of multiple mechanisms of innate IM resistance in primitive and quiescent CML cells.

Collaboration


Dive into the Connie J. Eaves's collaboration.

Top Co-Authors

Avatar

David J.H.F. Knapp

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

R. Keith Humphries

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiaoyan Jiang

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

Donna E. Hogge

Vancouver General Hospital

View shared research outputs
Top Co-Authors

Avatar

Johanne Cashman

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Hirst

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge