Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David J.H.F. Knapp is active.

Publication


Featured researches published by David J.H.F. Knapp.


Nature Methods | 2011

High-throughput analysis of single hematopoietic stem cell proliferation in microfluidic cell culture arrays

Véronique Lecault; Michael VanInsberghe; Sanja Sekulovic; David J.H.F. Knapp; Stefan Wöhrer; William Bowden; Francis Viel; Thomas McLaughlin; Asefeh Jarandehei; Michelle Miller; Didier Falconnet; Adam K. White; David G. Kent; Michael R. Copley; Fariborz Taghipour; Connie J. Eaves; R. Keith Humphries; James M. Piret; Carl Hansen

Heterogeneity in cell populations poses a major obstacle to understanding complex biological processes. Here we present a microfluidic platform containing thousands of nanoliter-scale chambers suitable for live-cell imaging studies of clonal cultures of nonadherent cells with precise control of the conditions, capabilities for in situ immunostaining and recovery of viable cells. We show that this platform mimics conventional cultures in reproducing the responses of various types of primitive mouse hematopoietic cells with retention of their functional properties, as demonstrated by subsequent in vitro and in vivo (transplantation) assays of recovered cells. The automated medium exchange of this system made it possible to define when Steel factor stimulation is first required by adult hematopoietic stem cells in vitro as the point of exit from quiescence. This technology will offer many new avenues to interrogate otherwise inaccessible mechanisms governing mammalian cell growth and fate decisions.


Science | 2014

Pyrimidoindole derivatives are agonists of human hematopoietic stem cell self-renewal

Iman Fares; Jalila Chagraoui; Yves Gareau; Stéphane Gingras; Réjean Ruel; Nadine Mayotte; Elizabeth Csaszar; David J.H.F. Knapp; Paul H. Miller; Mor Ngom; Suzan Imren; Denis Roy; Kori L. Watts; Hans Peter Kiem; Robert Herrington; Norman N. Iscove; R. Keith Humphries; Connie J. Eaves; Sandra Cohen; Anne Marinier; Peter W. Zandstra; Guy Sauvageau

Human adult stem cell expansion Transfused blood saves lives. Despite the widespread use of this critical resource, it is difficult to increase blood cell numbers outside of the body. By screening thousands of small compounds, Fares et al. identify a molecule that expands human stem cell numbers in cord blood. The researchers generate many variations of that molecule and show that one such compound provides even greater human blood cell expansion. If researchers can provide increased numbers of stem cells and progenitor cells, cord blood should find even greater use in the clinic. Science, this issue p. 1509 The self-renewal of human hematopoietic stem cells in vitrois enhanced by the pyrimidoindole derivative UM171. The small number of hematopoietic stem and progenitor cells in cord blood units limits their widespread use in human transplant protocols. We identified a family of chemically related small molecules that stimulates the expansion ex vivo of human cord blood cells capable of reconstituting human hematopoiesis for at least 6 months in immunocompromised mice. The potent activity of these newly identified compounds, UM171 being the prototype, is independent of suppression of the aryl hydrocarbon receptor, which targets cells with more-limited regenerative potential. The properties of UM171 make it a potential candidate for hematopoietic stem cell transplantation and gene therapy.


Nature Cell Biology | 2013

The Lin28b–let-7–Hmga2 axis determines the higher self-renewal potential of fetal haematopoietic stem cells

Michael R. Copley; Sonja Babovic; Claudia Benz; David J.H.F. Knapp; Philip A. Beer; David G. Kent; Stefan Wöhrer; David Treloar; Christopher Day; Keegan Rowe; Heidi Mader; Florian Kuchenbauer; R. Keith Humphries; Connie J. Eaves

Mouse haematopoietic stem cells (HSCs) undergo a postnatal transition in several properties, including a marked reduction in their self-renewal activity. We now show that the developmentally timed change in this key function of HSCs is associated with their decreased expression of Lin28b and an accompanying increase in their let-7 microRNA levels. Lentivirus-mediated overexpression of Lin28 in adult HSCs elevates their self-renewal activity in transplanted irradiated hosts, as does overexpression of Hmga2, a well-established let-7 target that is upregulated in fetal HSCs. Conversely, HSCs from fetal Hmga2−/− mice do not exhibit the heightened self-renewal activity that is characteristic of wild-type fetal HSCs. Interestingly, overexpression of Hmga2 in adult HSCs does not mimic the ability of elevated Lin28 to activate a fetal lymphoid differentiation program. Thus, Lin28b may act as a master regulator of developmentally timed changes in HSC programs with Hmga2 serving as its specific downstream modulator of HSC self-renewal potential.


Clinical Infectious Diseases | 2011

Deep V3 Sequencing for HIV Type 1 Tropism in Treatment-Naive Patients: A Reanalysis of the MERIT Trial of Maraviroc

Luke C. Swenson; Theresa Mo; Winnie Dong; Xiaoyin Zhong; Conan K. Woods; Alexander Thielen; Mark A. Jensen; David J.H.F. Knapp; Douglass Chapman; Simon Portsmouth; Marilyn Lewis; Ian James; Jayvant Heera; Hernan Valdez; P. Richard Harrigan

BACKGROUND Deep sequencing is a highly sensitive technique that can detect and quantify the proportion of non-R5 human immunodeficiency virus (HIV) variants, including small minorities, that may emerge and cause virologic failure in patients who receive maraviroc-containing regimens. We retrospectively tested the ability of deep sequencing to predict response to a maraviroc-containing regimen in the Maraviroc versus Efavirenz in Treatment-Naive Patients (MERIT) trial. Results were compared with those obtained using the Enhanced Sensitivity Trofile Assay (ESTA), which is widely used in clinical practice. METHODS Screening plasma samples from treatment-naive patients who received maraviroc and efavirenz in the MERIT trial were assessed. Samples were extracted, and the V3 region of HIV type 1 glycoprotein 120 was amplified in triplicate and combined in equal quantities before sequencing on a Roche/454 Genome Sequencer-FLX (n = 859). Tropism was inferred from third variable (V3) sequences, with samples classified as non-R5 if ≥2% of the viral population scored ≤3.5 using geno2pheno. RESULTS Deep sequencing distinguished between responders and nonresponders to maraviroc. Among patients identified as having R5-HIV by deep sequencing, 67% of maraviroc recipients and 69% of efavirenz recipients had a plasma viral load <50 copies/mL at week 48, similar to the ESTA results: 68% and 68%, respectively. CONCLUSIONS Reanalysis of the MERIT trial using deep V3 loop sequencing indicates that, had patients originally been screened using this method, the maraviroc arm would have likely been found to be noninferior to the efavirenz arm.


Blood | 2013

Analysis of the clonal growth and differentiation dynamics of primitive barcoded human cord blood cells in NSG mice

Alice M.S. Cheung; Long V. Nguyen; Annaick Carles; Philip A. Beer; Paul H. Miller; David J.H.F. Knapp; Kiran Dhillon; Martin Hirst; Connie J. Eaves

Human cord blood (CB) offers an attractive source of cells for clinical transplants because of its rich content of cells with sustained repopulating ability in spite of an apparent deficiency of cells with rapid reconstituting ability. Nevertheless, the clonal dynamics of nonlimiting CB transplants remain poorly understood. To begin to address this question, we exposed CD34+ CB cells to a library of barcoded lentiviruses and used massively parallel sequencing to quantify the clonal distributions of lymphoid and myeloid cells subsequently detected in sequential marrow aspirates obtained from 2 primary NOD/SCID-IL2Rγ(-/-) mice, each transplanted with ∼10(5) of these cells, and for another 6 months in 2 secondary recipients. Of the 196 clones identified, 68 were detected at 4 weeks posttransplant and were often lympho-myeloid. The rest were detected later, after variable periods up to 13 months posttransplant, but with generally increasing stability throughout time, and they included clones in which different lineages were detected. However, definitive evidence of individual cells capable of generating T-, B-, and myeloid cells, for over a year, and self-renewal of this potential was also obtained. These findings highlight the caveats and utility of this model to analyze human hematopoietic stem cell control in vivo.


Stem Cells | 2012

Aldehyde Dehydrogenase Activity Is a Biomarker of Primitive Normal Human Mammary Luminal Cells

Peter Eirew; Nagarajan Kannan; David J.H.F. Knapp; François Vaillant; Joanne T. Emerman; Geoffrey J. Lindeman; Jane E. Visvader; Connie J. Eaves

Elevated aldehyde dehydrogenase (ALDH) expression/activity has been identified as an important biomarker of primitive cells in various normal and malignant human tissues. Here we examined the level and type of ALDH expression and activity in different subsets of phenotypically and functionally defined normal human mammary cells. We find that the most primitive human mammary stem and progenitor cell types with bilineage differentiation potential show low ALDH activity but undergo a marked, selective, and transient upregulation of ALDH activity at the point of commitment to the luminal lineage. This mirrors a corresponding change in transcripts and protein levels of ALDH1A3, an enzyme involved in retinoic acid synthesis and the most highly expressed ALDH gene in normal human mammary tissue. In contrast, ALDH1A1 is expressed at low levels in all mammary epithelial cells. These findings raise interesting questions about the reported association of ALDH activity with breast cancer stem cells and breast cancer prognosis. STEM CELLS 2012; 30:344–348.


Blood | 2013

Enhanced normal short-term human myelopoiesis in mice engineered to express human-specific myeloid growth factors

Paul H. Miller; Alice M.S. Cheung; Philip A. Beer; David J.H.F. Knapp; Kiran Dhillon; G. Rabu; Shabnam Rostamirad; R K Humphries; Connie J. Eaves

UNLABELLED Better methods to characterize normal human hematopoietic cells with short-term repopulating activity cells (STRCs) are needed to facilitate improving recovery rates in transplanted patients.We now show that 5-fold more human myeloid cells are produced in sublethally irradiated NOD/SCID-IL-2Receptor-γchain-null (NSG) mice engineered to constitutively produce human interleukin-3, granulocyte-macrophage colony-stimulating factor and Steel factor (NSG-3GS mice) than in regular NSG mice 3 weeks after an intravenous injection of CD34 human cord blood cells. Importantly, the NSG-3GS mice also show a concomitant and matched increase in circulating mature human neutrophils. Imaging NSG-3GS recipients of lenti-luciferase-transduced cells showed that human cells being produced 3 weeks posttransplant were heterogeneously distributed, validating the blood as a more representative measure of transplanted STRC activity. Limiting dilution transplants further demonstrated that the early increase in human granulopoiesis in NSG-3GS mice reflects an expanded output of differentiated cells per STRC rather than an increase in STRC detection. KEY POINTS NSG-3GS mice support enhanced clonal outputs from human short-term repopulating cells (STRCs) without affecting their engrafting efficiency. Increased human STRC clone sizes enable their more precise and efficient measurement by peripheral blood monitoring.


PLOS Biology | 2013

Developmental changes in the in vitro activated regenerative activity of primitive mammary epithelial cells.

Maisam Makarem; Nagarajan Kannan; Long V. Nguyen; David J.H.F. Knapp; Sneha Balani; Michael D. Prater; John Stingl; Afshin Raouf; Oksana Nemirovsky; Peter Eirew; Connie J. Eaves

Mouse fetal mammary cells display greater regenerative activity than do adult mammary cells when stimulated to proliferate in a new system that supports the production of transplantable mammary stem cells ex vivo.


Nature Communications | 2014

DNA barcoding reveals diverse growth kinetics of human breast tumour subclones in serially passaged xenografts

Long V. Nguyen; Claire L. Cox; Peter Eirew; David J.H.F. Knapp; Davide Pellacani; Nagarajan Kannan; Annaick Carles; Michelle Moksa; Sneha Balani; Sohrab P. Shah; Martin Hirst; Samuel Aparicio; Connie J. Eaves

Genomic and phenotypic analyses indicate extensive intra- as well as intertumoral heterogeneity in primary human malignant cell populations despite their clonal origin. Cellular DNA barcoding offers a powerful and unbiased alternative to track the number and size of multiple subclones within a single human tumour xenograft and their response to continued in vivo passaging. Using this approach we find clone-initiating cell frequencies that vary from ~1/10 to ~1/10,000 cells transplanted for two human breast cancer cell lines and breast cancer xenografts derived from three different patients. For the cell lines, these frequencies are negatively affected in transplants of more than 20,000 cells. Serial transplants reveal five clonal growth patterns (unchanging, expanding, diminishing, fluctuating or of delayed onset), whose predominance is highly variable both between and within original samples. This study thus demonstrates the high growth potential and diverse growth properties of xenografted human breast cancer cells.


AIDS | 2011

Dates of HIV infection can be estimated for seroprevalent patients by coalescent analysis of serial next-generation sequencing data.

Art F. Y. Poon; Rachel A. McGovern; Theresa Mo; David J.H.F. Knapp; Bluma G. Brenner; Jean-Pierre Routy; Mark A. Wainberg; P. Richard Harrigan

Objective:To reconstruct dates of HIV infection by the coalescent analysis of longitudinal next-generation sequencing (NGS) data. Design:The coalescent predicts the time that has elapsed since the most recent common ancestor (MRCA) of a population. Because HIV tends to undergo severe bottlenecks upon transmission, the MRCA may be a good predictor of the time of infection. NGS provides an efficient means for performing large-scale clonal sequencing of HIV populations within patients, and the ideal raw material for coalescent analysis. Methods:Baseline and follow-up plasma samples were obtained from 19 individuals enrolled into the Montréal Primary HIV Infection cohort. Dates of infection were initially estimated at baseline from nongenetic data (clinical and serological markers and patient questionnaires). HIV RNA was extracted and seven regions of the genome were amplified, subjected to parallel-tagged 454 pyrosequencing, and analyzed using the software package BEAST. Results:Mean estimates of the time to the MRCA per patient were significantly correlated with nongenetic estimates (Spearmans ϱ = 0.65, P = 4.4 × 10–3). The median absolute difference between coalescent and nongenetic date estimates was smallest (median 29.4 days) for highly variable regions of the HIV genome such as env V3, and greater (median 114.9 days) for more conserved regions such as pol. Conclusion:This application of NGS represents an important advancement, not only because accurate estimates of dates of infection can be derived retrospectively from archived specimens, but also because each analysis is patient-specific and, therefore, robust to variation in rates of HIV evolution.

Collaboration


Dive into the David J.H.F. Knapp's collaboration.

Top Co-Authors

Avatar

Connie J. Eaves

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Martin Hirst

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Keith Humphries

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carl Hansen

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar

P. Richard Harrigan

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge