Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Conrad L. Leung is active.

Publication


Featured researches published by Conrad L. Leung.


Nature Genetics | 2004

Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy

Oleg V. Evgrafov; Irena Mersiyanova; Joy Irobi; Ludo Van Den Bosch; Ines Dierick; Conrad L. Leung; Olga Schagina; Nathalie Verpoorten; Katrien Van Impe; Valeriy P. Fedotov; Elena L. Dadali; Michaela Auer-Grumbach; Christian Windpassinger; Klaus Wagner; Zoran Mitrović; David Hilton-Jones; Kevin Talbot; Jean-Jacques Martin; Natalia Vasserman; Svetlana Tverskaya; Alexander V. Polyakov; Ronald K.H. Liem; Jan Gettemans; Wim Robberecht; Vincent Timmerman

Charcot-Marie-Tooth disease (CMT) is the most common inherited neuromuscular disease and is characterized by considerable clinical and genetic heterogeneity. We previously reported a Russian family with autosomal dominant axonal CMT and assigned the locus underlying the disease (CMT2F; OMIM 606595) to chromosome 7q11–q21 (ref. 2). Here we report a missense mutation in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1, also called HSP27) that segregates in the family with CMT2F. Screening for mutations in HSPB1 in 301 individuals with CMT and 115 individuals with distal hereditary motor neuropathies (distal HMNs) confirmed the previously observed mutation and identified four additional missense mutations. We observed the additional HSPB1 mutations in four families with distal HMN and in one individual with CMT neuropathy. Four mutations are located in the Hsp20–α-crystallin domain, and one mutation is in the C-terminal part of the HSP27 protein. Neuronal cells transfected with mutated HSPB1 were less viable than cells expressing the wild-type protein. Cotransfection of neurofilament light chain (NEFL) and mutant HSPB1 resulted in altered neurofilament assembly in cells devoid of cytoplasmic intermediate filaments.


Trends in Cell Biology | 2002

Plakins: a family of versatile cytolinker proteins

Conrad L. Leung; Kathleen J. Green; Ronald K.H. Liem

By connecting cytoskeletal elements to each other and to junctional complexes, the plakin family of cytolinkers plays a crucial role in orchestrating cellular development and maintaining tissue integrity. Plakins are built from combinations of interacting domains that bind to microfilaments, microtubules, intermediate filaments, cell-adhesion molecules and members of the armadillo family. Plakins are involved in both inherited and autoimmune diseases that affect the skin, neuronal tissue, and cardiac and skeletal muscle. Here, we describe the members of the plakin family and their interaction partners, and give examples of the cellular defects that result from their dysfunction.


Annals of Neurology | 2005

Model-guided microarray implicates the retromer complex in Alzheimer's disease

Scott A. Small; Kelly Kent; Aimee Pierce; Conrad L. Leung; Min Suk Kang; Hirokazu Okada; Lawrence S. Honig; Jean Paul Vonsattel; Tae‐Wan Kim

Although, in principle, gene expression profiling is well suited to isolate pathogenic molecules associated with Alzheimers disease (AD), techniques such as microarray present unique analytic challenges when applied to disorders of the brain. Here, we addressed these challenges by first constructing a spatiotemporal model, predicting a priori how a molecule underlying AD should behave anatomically and over time. Then, guided by the model, we generated gene expression profiles of the entorhinal cortex and the dentate gyrus, harvested from the brains of AD cases and controls covering a broad age span. Among many expression differences, the retromer trafficking molecule VPS35 best conformed to the spatiotemporal model of AD. Western blotting confirmed the abnormality, establishing that VPS35 levels are reduced in brain regions selectively vulnerable to AD. VPS35 is the core molecule of the retromer trafficking complex and further analysis revealed that VPS26, another member of the complex, is also downregulated in AD. Cell culture studies, using small interfering RNAs or expression vectors, showed that VPS35 regulates Aβ peptide levels, establishing the relevance of the retromer complex to AD. Reviewing our findings in the context of recent studies suggests how downregulation of the retromer complex in AD can regulate local levels of Aβ peptide. Ann Neurol 2005;58:909–919


Journal of Cell Biology | 2001

The BPAG1 locus: alternative splicing produces multiple isoforms with distinct cytoskeletal linker domains, including predominant isoforms in neurons and muscles

Conrad L. Leung; Min Zheng; Susan M. Prater; Ronald K.H. Liem

Bullous pemphigoid antigen 1 (BPAG1) is a member of the plakin family with cytoskeletal linker properties. Mutations in BPAG1 cause sensory neuron degeneration and skin fragility in mice. We have analyzed the BPAG1 locus in detail and found that it encodes different interaction domains that are combined in tissue-specific manners. These domains include an actin-binding domain (ABD), a plakin domain, a coiled coil (CC) rod domain, two different potential intermediate filament–binding domains (IFBDs), a spectrin repeat (SR)-containing rod domain, and a microtubule-binding domain (MTBD). There are at least three major forms of BPAG1: BPAG1-e (302 kD), BPAG1-a (615 kD), and BPAG1-b (834 kD). BPAG1-e has been described previously and consists of the plakin domain, the CC rod domain, and the first IFBD. It is the primary epidermal BPAG1 isoform, and its absence that is the likely cause of skin fragility in mutant mice. BPAG1-a is the major isoform in the nervous system and a homologue of the microtubule actin cross-linking factor, MACF. BPAG1-a is composed of the ABD, the plakin domain, the SR-containing rod domain, and the MTBD. The absence of BPAG1-a is the likely cause of sensory neurodegeneration in mutant mice. BPAG1-b is highly expressed in muscles, and has extra exons encoding a second IFBD between the plakin and SR-containing rod domains of BPAG1-a.


Nature Reviews Molecular Cell Biology | 2004

PLAKINS: GOLIATHS THAT LINK CELL JUNCTIONS AND THE CYTOSKELETON

Julius J. Jefferson; Conrad L. Leung; Ronald K.H. Liem

Plakins comprise a family of proteins that crosslink cytoskeletal filaments and attach them to membrane-associated complexes at cell junctions. They were originally found associated with intermediate filaments and were believed to function primarily in maintaining epithelial tissue integrity. However, new plakins with unique isoforms that are enormous in size have been identified in the past few years. These new plakins have highlighted further functions in all the cytoskeletal networks, as well as in non-epithelial cells.


Journal of Neurobiology | 1998

Region‐specific expression of cyclin‐dependent kinase 5 (cdk5) and its activators, p35 and p39, in the developing and adult rat central nervous system

Min Zheng; Conrad L. Leung; Ronald K.H. Liem

The ubiquitously expressed cyclin-dependent kinase 5 (cdk5) is essential for brain development. Bioactivation of cdk5 in the brain requires the presence of one of two related regulatory subunits, p35 and p39. Since either protein alone can activate cdk5, the significance of their coexistence as cdk5 kinase activators is unclear. To determine whether the two activators are expressed in different cells throughout the nervous system and during development, we compared the tissue distributions of cdk5, p35, and p39 mRNAs in the rat using in situ hybridization. In the adult rat, expression levels of p35 mRNA are generally higher in the brain than in the spinal cord, while the converse is observed for p39 mRNA. During neurogenesis, both p35 and p39 transcripts can be detected as early as embryonic day 12 (E12) in the marginal zone, but are absent from the ventricular zone, which may restrict cdk5 activation to the postmitotic neural cells in the developing brain. The expression levels of p35 and p39 mRNAs in the marginal zone increase by E15 and E17, paralleling the neurogenetic timetable. One exception is in the rostral forebrain, where p35 mRNA expression levels are high, suggesting that p35 may be the major activator for cdk5 during telencephalic morphogenesis. A significant level of p35 mRNA is present in the myotome at E12 and p35 expression persists in the premuscle mass and mature musculature at later stages, suggesting that p35 may also activate cdk5 during myogenesis.


The Journal of Neuroscience | 2007

Bim Is Elevated in Alzheimer's Disease Neurons and Is Required for β-Amyloid-Induced Neuronal Apoptosis

Subhas C. Biswas; Yijie Shi; Jean Paul Vonsattel; Conrad L. Leung; Carol M. Troy; Lloyd A. Greene

The molecules that mediate neuron death in Alzheimers disease (AD) are largely unknown. We report that β-amyloid (Aβ), a death-promoting peptide implicated in the pathophysiology of AD, induces the proapoptotic protein Bcl-2 interacting mediator of cell death (Bim) in cultured hippocampal and cortical neurons. We further find that Bim is an essential mediator of Aβ-induced neurotoxicity. Our examination of postmortem AD human brains additionally reveals upregulation of Bim in vulnerable entorhinal cortical neurons, but not in cerebellum, a region usually unaffected by AD. Accumulating evidence links inappropriate induction/activation of cell cycle-related proteins to AD, but their roles in the disease have been unclear. We find that the cell cycle molecule cyclin-dependent kinase 4 (cdk4) and its downstream effector B-myb, are required for Aβ-dependent Bim induction and death in cultured neurons. Moreover, neurons that overexpress Bim in AD brains also show elevated levels of the cell cycle-related proteins cdk4 and phospho-Rb. Our observations indicate that Bim is a proapoptotic effector of Aβ and of dysregulated cell cycle proteins in AD and identify both Bim and cell cycle elements as potential therapeutic targets.


Brain Pathology | 2006

A Pathogenic Peripherin Gene Mutation in a Patient with Amyotrophic Lateral Sclerosis

Conrad L. Leung; Cui Zhen He; Petra Kaufmann; Steven S. Chin; Ali Naini; Ronald K.H. Liem; Hiroshi Mitsumoto; Arthur P. Hays

Peripherin is a neuronal intermediate filament protein that is expressed chiefly in motor neurons and other nerve cells that project into the peripheral nervous system. Transgenic mice that over‐express peripherin develop motor neuron degeneration, suggesting that mutations in peripherin could contribute to the development of motor neuron disease. In this paper, we report the identification of a homozygous mutation in the peripherin gene (PRPH) in a patient with amyotrophic lateral sclerosis (ALS). The mutation resulted in a substitution of aspartate with tyrosine at amino acid position 141, which is located within the first linker region of the rod domain. Immunocytochemical analysis of the spinal cord of the patient upon autopsy revealed distinctive large aggregates within the cell bodies of residual spinal motor neurons that contained peripherin and was also immunoreactive with antibodies to the neurofilament proteins. In order to study the effect of the mutation on peripherin assembly, we performed transient transfections. Unlike wild‐type peripherin, which self‐assembles to form a filamentous network, the mutant peripherin was prone to form aggregates in transfected cells, indicating that the mutation adversely affects peripherin assembly. Moreover, the neurofilament light (NF‐L) protein was not able to rescue the mutant protein from forming aggregates. These data imply that mutation of PRPH is a contributing factor for ALS.


Journal of Cell Science | 2002

Effects of Charcot-Marie-Tooth-linked mutations of the neurofilament light subunit on intermediate filament formation.

Raul Perez-Olle; Conrad L. Leung; Ronald K.H. Liem

Neurofilaments (NFs) are the major intermediate filaments (IFs) of mature neurons. They play important roles in the structure and function of axons. Recently, two mutations in the neurofilament light (NFL) subunit have been identified in families affected by Charcot-Marie-Tooth (CMT) neuropathy type 2. We have characterized the effects of these NFL mutations on the formation of IF networks using a transient transfection system. Both mutations disrupted the self-assembly of human NFL. The Q333P mutant in the rod domain of NFL also disrupted the formation of rat and human NFL/NFM heteropolymers. The phenotypes produced by the P8R mutation in the head domain of NFL were less severe. The P8R mutant NFL co-polymerized with NFM to form bundled filaments and, less often, aggregates. Our results suggest that alterations in the formation of a normal IF network in neurons elicited by these NFL mutations may contribute to the development of Charcot-Marie-Tooth neuropathy.


Journal of Cell Science | 2005

Microtubule actin crosslinking factor 1b: a novel plakin that localizes to the Golgi complex

Chung-Ming Lin; Hui-Jye Chen; Conrad L. Leung; David A.D. Parry; Ronald K.H. Liem

MACF1 (microtubule actin crosslinking factor), also called ACF7 (actin crosslinking family 7) is a cytoskeletal linker protein that can associate with both actin filaments and microtubules. We have identified a novel alternatively spliced isoform of MACF1. We named this isoform MACF1b and renamed the original isoform MACF1a. MACF1b is identical to MACF1a, except that it has a region containing plakin (or plectin) repeats in the middle of the molecule. MACF1b is ubiquitously expressed in adult tissues with especially high levels in the lung. We studied the subcellular localization of MACF1b proteins in mammalian cell lines. In two lung cell lines, MACF1b was chiefly localized to the Golgi complex. Upon treatments that disrupt the Golgi complex, MACF1b redistributed into the cytosol, but remained co-localized with the dispersed Golgi ministacks. MACF1b proteins can be detected in the enriched Golgi fraction by western blotting. The domain of MACF1b that targets it to the Golgi was found at the N-terminal part of the region that contains the plakin repeats. Reducing the level of MACF1 proteins by small-interfering RNA resulted in the dispersal of the Golgi complex.

Collaboration


Dive into the Conrad L. Leung's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge