Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Constadina Arvanitis is active.

Publication


Featured researches published by Constadina Arvanitis.


Nature | 2004

MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer

Catherine M. Shachaf; Constadina Arvanitis; Åsa Karlsson; Shelly Beer; Stefanie Mandl; Michael H. Bachmann; Alexander D. Borowsky; Boris H. Ruebner; Robert D. Cardiff; Qiwei Yang; J. Michael Bishop; Christopher H. Contag; Dean W. Felsher

Hepatocellular carcinoma is generally refractory to clinical treatment. Here, we report that inactivation of the MYC oncogene is sufficient to induce sustained regression of invasive liver cancers. MYC inactivation resulted en masse in tumour cells differentiating into hepatocytes and biliary cells forming bile duct structures, and this was associated with rapid loss of expression of the tumour marker α-fetoprotein, the increase in expression of liver cell markers cytokeratin 8 and carcinoembryonic antigen, and in some cells the liver stem cell marker cytokeratin 19. Using in vivo bioluminescence imaging we found that many of these tumour cells remained dormant as long as MYC remain inactivated; however, MYC reactivation immediately restored their neoplastic features. Using array comparative genomic hybridization we confirmed that these dormant liver cells and the restored tumour retained the identical molecular signature and hence were clonally derived from the tumour cells. Our results show how oncogene inactivation may reverse tumorigenesis in the most clinically difficult cancers. Oncogene inactivation uncovers the pluripotent capacity of tumours to differentiate into normal cellular lineages and tissue structures, while retaining their latent potential to become cancerous, and hence existing in a state of tumour dormancy.


British Journal of Cancer | 2009

Dasatinib synergizes with doxorubicin to block growth, migration, and invasion of breast cancer cells.

Christina S. Pichot; Sean M. Hartig; Ling Wei Xia; Constadina Arvanitis; D Monisvais; Francis Y. Lee; Jeffrey A Frost; Seth J. Corey

Background:Src family kinases control multiple cancer cell properties including cell cycle progression, survival, and metastasis. Recent studies suggest that the Src inhibitor dasatinib blocks these critical cancer cell functions.Methods:Because the molecular mechanism of action of dasatinib in breast cancers has not been investigated, we evaluated the effects of dasatinib as a single agent and in combination with the commonly used chemotherapeutic doxorubicin, on the proliferation, viability, and invasive capacity of breast cancer cells lines earlier categorised as dasatinib-sensitive (MDA-MB-231) and moderately resistant (MCF7 and T47D). We also tested the effects of these drugs on the actin cytoskeleton and associated signalling pathways.Results:The cell lines tested varied widely in sensitivity to growth inhibition (IC50=0.16–12.3 μM), despite comparable Src kinase inhibition by dasatinib (IC50=17–37 nM). In the most sensitive cell line, MDA-MB-231, dasatinib treatment induced significant G1 accumulation with little apoptosis, disrupted cellular morphology, blocked migration, inhibited invasion through Matrigel (P<0.01), and blocked the formation of invadopodia (P<0.001). Importantly, combination treatment with doxorubicin resulted in synergistic growth inhibition in all cell lines and blocked the migration and invasion of the highly metastatic, triple-negative MDA-MB-231 cell line.Conclusion:The observed synergy between dasatinib and doxorubicin warrants the re-evaluation of dasatinib as an effective agent in multi-drug regimens for the treatment of invasive breast cancers.


PLOS Biology | 2004

Developmental Context Determines Latency of MYC-Induced Tumorigenesis

Shelly Beer; Anders Zetterberg; Rebecca A. Ihrie; Ryan A. McTaggart; Qiwei Yang; Nicole Bradon; Constadina Arvanitis; Laura D. Attardi; Sandy Feng; Boris H. Ruebner; Robert D. Cardiff; Dean W. Felsher

One of the enigmas in tumor biology is that different types of cancers are prevalent in different age groups. One possible explanation is that the ability of a specific oncogene to cause tumorigenesis in a particular cell type depends on epigenetic parameters such as the developmental context. To address this hypothesis, we have used the tetracycline regulatory system to generate transgenic mice in which the expression of a c-MYC human transgene can be conditionally regulated in murine hepatocytes. MYCs ability to induce tumorigenesis was dependent upon developmental context. In embryonic and neonatal mice, MYC overexpression in the liver induced marked cell proliferation and immediate onset of neoplasia. In contrast, in adult mice MYC overexpression induced cell growth and DNA replication without mitotic cell division, and mice succumbed to neoplasia only after a prolonged latency. In adult hepatocytes, MYC activation failed to induce cell division, which was at least in part mediated through the activation of p53. Surprisingly, apoptosis is not a barrier to MYC inducing tumorigenesis. The ability of oncogenes to induce tumorigenesis may be generally restrained by developmentally specific mechanisms. Adult somatic cells have evolved mechanisms to prevent individual oncogenes from initiating cellular growth, DNA replication, and mitotic cellular division alone, thereby preventing any single genetic event from inducing tumorigenesis.


Cancer Research | 2010

Cdc42-Interacting Protein 4 Promotes Breast Cancer Cell Invasion and Formation of Invadopodia through Activation of N-WASp

Christina S. Pichot; Constadina Arvanitis; Sean M. Hartig; Samuel A. Jensen; John E. Bechill; Saad Marzouk; Jindan Yu; Jeffrey A Frost; Seth J. Corey

In the earliest stages of metastasis, breast cancer cells must reorganize the cytoskeleton to affect cell shape change and promote cell invasion and motility. These events require the cytoskeletal regulators Cdc42 and Rho, their effectors such as N-WASp/WAVE, and direct inducers of actin polymerization such as Arp2/3. Little consideration has been given to molecules that shape the cell membrane. The F-BAR proteins CIP4, TOCA-1, and FBP17 generate membrane curvature and act as scaffolding proteins for activated Cdc42 and N-WASp. We found that expression of CIP4, but not TOCA-1 or FBP17, was increased in invasive breast cancer cell lines in comparison with weakly or noninvasive breast cancer cell lines. Endogenous CIP4 localized to the leading edge of migrating cells and to invadopodia in cells invading gelatin. Because CIP4 serves as a scaffolding protein for Cdc42, Src, and N-WASp, we tested whether loss of CIP4 could result in decreased N-WASp function. Interaction between CIP4 and N-WASp was epidermal growth factor responsive, and CIP4 silencing by small interfering RNA caused decreased tyrosine phosphorylation of N-WASp at a Src-dependent activation site (Y256). CIP4 silencing also impaired the migration and invasion of MDA-MB-231 cells and was associated with decreased formation of invadopodia and gelatin degradation. This study presents a new role for CIP4 in the promotion of migration and invasion of MDA-MB-231 breast cancer cells and establishes the contribution of F-BAR proteins to cancer cell motility and invasion.


PLOS Genetics | 2008

Combined Analysis of Murine and Human Microarrays and ChIP Analysis Reveals Genes Associated with the Ability of MYC To Maintain Tumorigenesis

Chi Hwa Wu; Debashis Sahoo; Constadina Arvanitis; Nicole Bradon; David L. Dill; Dean W. Felsher

The MYC oncogene has been implicated in the regulation of up to thousands of genes involved in many cellular programs including proliferation, growth, differentiation, self-renewal, and apoptosis. MYC is thought to induce cancer through an exaggerated effect on these physiologic programs. Which of these genes are responsible for the ability of MYC to initiate and/or maintain tumorigenesis is not clear. Previously, we have shown that upon brief MYC inactivation, some tumors undergo sustained regression. Here we demonstrate that upon MYC inactivation there are global permanent changes in gene expression detected by microarray analysis. By applying StepMiner analysis, we identified genes whose expression most strongly correlated with the ability of MYC to induce a neoplastic state. Notably, genes were identified that exhibited permanent changes in mRNA expression upon MYC inactivation. Importantly, permanent changes in gene expression could be shown by chromatin immunoprecipitation (ChIP) to be associated with permanent changes in the ability of MYC to bind to the promoter regions. Our list of candidate genes associated with tumor maintenance was further refined by comparing our analysis with other published results to generate a gene signature associated with MYC-induced tumorigenesis in mice. To validate the role of gene signatures associated with MYC in human tumorigenesis, we examined the expression of human homologs in 273 published human lymphoma microarray datasets in Affymetrix U133A format. One large functional group of these genes included the ribosomal structural proteins. In addition, we identified a group of genes involved in a diverse array of cellular functions including: BZW2, H2AFY, SFRS3, NAP1L1, NOLA2, UBE2D2, CCNG1, LIFR, FABP3, and EDG1. Hence, through our analysis of gene expression in murine tumor models and human lymphomas, we have identified a novel gene signature correlated with the ability of MYC to maintain tumorigenesis.


Cancer Biology & Therapy | 2008

18F and 18FDG PET imaging of osteosarcoma to non-invasively monitor in situ changes in cellular proliferation and bone differentiation upon MYC inactivation

Constadina Arvanitis; Pavan K. Bendapudi; Jeffrey R. Tseng; Sanjiv S. Gambhir; Dean W. Felsher

Osteosarcoma is one of the most common pediatric cancers. Accurate imaging of osteosarcoma is important for proper clinical staging of the disease and monitoring of the tumor’s response to therapy. The MYC oncogene has been commonly implicated in the pathogenesis of human osteosarcoma. Previously, we have described a conditional transgenic mouse model of MYC-induced osteosarcoma. These tumors are highly invasive and are frequently associated with pulmonary metastases. In our model, upon MYC inactivation osteosarcomas lose their neoplastic properties, undergo proliferative arrest, and differentiate into mature bone. We reasoned that we could use our model system to develop non-invasive imaging modalities to interrogate the consequences of MYC inactivation on tumor cell biology in situ. We performed Positron Emission Tomography (PET) combining the use of both 18F-fluorodeoxyglucose (18FDG) and 18F-flouride (18F) to detect metabolic activity and bone mineralization/remodeling. We found that upon MYC inactivation, tumors exhibited a slight reduction in uptake of 18FDG and a significant increase in the uptake of 18F along with associated histological changes. Thus, these cells have apparently lost their neoplastic properties based upon both examination of their histology and biologic activity. However, these tumors continue to accumulate 18FDG at levels significantly elevated compared to normal bone. Therefore, PET can be used to distinguish normal bone cells from tumors that have undergone differentiation upon oncogene inactivation. In addition, we found that 18F is a highly sensitive tracer for detection of pulmonary metastasis. Collectively, we conclude that combined modality PET/CT imaging incorporating both 18FDG and 18F is a highly sensitive means to non-invasively measure osteosarcoma growth and the therapeutic response, as well as to detect tumor cells that have undergone differentiation upon oncogene inactivation


PLOS ONE | 2014

Structure and biomechanics of the endothelial transcellular circumferential invasion array in tumor invasion.

Constadina Arvanitis; Satya Khuon; Rachel Spann; Karen M. Ridge; Teng Leong Chew

Cancer cells breach the endothelium not only through cell-cell junctions but also via individual endothelial cells (ECs), or transcellular invasion. The underlying EC forms a circular structure around the transcellular invasion pore that is dependent on myosin light chain kinase (MLCK) and myosin II regulatory light chain (RLC) phosphorylation. Here we offer mechanistic insights into transcellular invasive array formation amid persistent tensile force from activated EC myosin. Fluorescence recovery after photobleaching (FRAP) experiments, sarcomeric distance measurements using super-resolution microscopy and electron microscopy provide details about the nature of the myosin II invasion array. To probe the relationship between biomechanical forces and the tension required to maintain the curvature of contractile filaments, we targeted individual actin-myosin fibers at the invasion site for photoablation. We showed that adjacent filaments rapidly replace the ablat11ed structures. We propose that the transcellular circumferential invasion array (TCIA) provides the necessary constraint within the EC to blunt the radial compression from the invading cancer cell.


BioTechniques | 2016

A simple, low-cost staining method for rapid-throughput analysis of tumor spheroids

Frank Eckerdt; Angel Alvarez; Jonathan B. Bell; Constadina Arvanitis; Asneha Iqbal; Ahmet Dirim Arslan; Bo Hu; Shi Yuan Cheng; Stewart Goldman; Leonidas C. Platanias

Tumor spheroids are becoming an important tool for the investigation of cancer stem cell (CSC) function in tumors; thus, low-cost and high-throughput methods for drug screening of tumor spheroids are needed. Using neurospheres as non-adherent three-dimensional (3-D) cultures, we developed a simple, low-cost acridine orange (AO)-based method that allows for rapid analysis of live neurospheres by fluorescence microscopy in a 96-well format. This assay measures the cross-section area of a spheroid, which corresponds to cell viability. Our novel method allows rapid screening of a panel of anti-proliferative drugs to assess inhibitory effects on the growth of cancer stem cells in 3-D cultures.


Recent results in cancer research | 2007

Identifying critical signaling molecules for the treatment of cancer.

Constadina Arvanitis; Pavan K. Bendapudi; Pavan Bachireddy; Dean W. Felsher

Tumorigenesis is a multistep process whereby an individual cell acquires a series of mutant gene products. These genetic changes culminate in proliferation, growth, blocked differentiation, induction of angiogenesis, tissue invasion, and loss of genomic stability. Given the genetic complexity of tumorigenesis, it is perhaps surprising that there are circumstances in which cancer can be reversed through the repair or inactivation of individual mutant genes. However, recent experiments in transgenic mouse models and clinical results with new pharmacological agents demonstrate that cancer can be treated through the targeted repair and/or inactivation of mutant proteins. Hence, cancers appear to be dependent upon particular oncogenes to maintain their neoplastic properties, thus exhibiting the phenomenon of “oncogene addiction.”


Investigative Ophthalmology & Visual Science | 2018

EphA2/Ephrin-A1 Mediate Corneal Epithelial Cell Compartmentalization via ADAM10 Regulation of EGFR Signaling

Nihal Kaplan; Rosa Ventrella; Han Peng; Sonali Pal-Ghosh; Constadina Arvanitis; Joshua Z. Rappoport; Brian J. Mitchell; Mary Ann Stepp; Robert M. Lavker; Spiro Getsios

Purpose Progenitor cells of the limbal epithelium reside in a discrete area peripheral to the more differentiated corneal epithelium and maintain tissue homeostasis. What regulates the limbal–corneal epithelial boundary is a major unanswered question. Ephrin-A1 ligand is enriched in the limbal epithelium, whereas EphA2 receptor is concentrated in the corneal epithelium. This reciprocal pattern led us to assess the role of ephrin-A1 and EphA2 in limbal–corneal epithelial boundary organization. Methods EphA2-expressing corneal epithelial cells engineered to express ephrin-A1 were used to study boundary formation in vitro in a manner that mimicked the relative abundance of these juxtamembrane signaling proteins in the limbal and corneal epithelium in vivo. Interaction of these two distinct cell populations following initial seeding into discrete culture compartments was assessed by live cell imaging. Immunofluoresence and immunoblotting was used to evaluate the contribution of downstream growth factor signaling and cell–cell adhesion systems to boundary formation at sites of heterotypic contact between ephrin-A1 and EphA2 expressing cells. Results Ephrin-A1–expressing cells impeded and reversed the migration of EphA2-expressing corneal epithelial cells upon heterotypic contact formation leading to coordinated migration of the two cell populations in the direction of an ephrin-A1–expressing leading front. Genetic silencing and pharmacologic inhibitor studies demonstrated that the ability of ephrin-A1 to direct migration of EphA2-expressing cells depended on an a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) and epidermal growth factor receptor (EGFR) signaling pathway that limited E-cadherin–mediated adhesion at heterotypic boundaries. Conclusions Ephrin-A1/EphA2 signaling complexes play a key role in limbal–corneal epithelial compartmentalization and the response of these tissues to injury.

Collaboration


Dive into the Constadina Arvanitis's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christina S. Pichot

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Han Peng

Northwestern University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jeffrey A Frost

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nihal Kaplan

Northwestern University

View shared research outputs
Researchain Logo
Decentralizing Knowledge