Constantin Tamvakopoulos
Academy of Athens
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Constantin Tamvakopoulos.
Clinical Cancer Research | 2007
Constantin Tamvakopoulos; Konstantinos Dimas; Zacharias D. Sofianos; Sophia Hatziantoniou; Zhiyong Han; Zhong-Li Liu; James H. Wyche; Panayotis Pantazis
Purpose: The plant-derived compound curcumin has shown promising abilities as a cancer chemoprevention and chemotherapy agent in vitro and in vivo but exhibits poor bioavailability. Therefore, there is a need to investigate modified curcumin congeners for improved anticancer activity and pharmacokinetic properties. Experimental Design: The synthetic curcumin analogue dimethoxycurcumin was compared with curcumin for ability to inhibit proliferation and apoptosis of human HCT116 colon cancer cells in vitro by estimating the GI50 and LC50 values and detecting the extent of apoptosis by flow cytometry analysis of the cell cycle. Metabolic stability and/or identification of metabolites were evaluated by recently developed mass spectrometric approaches after incubation with mouse and human liver microsomes and cancer cells in vitro. Additionally, circulating levels of dimethoxycurcumin and curcumin were determined in mice following i.p. administration. Results: Dimethoxycurcumin is significantly more potent than curcumin in inhibiting proliferation and inducing apoptosis in HCT116 cells treated for 48 h. Nearly 100% of curcumin but <30% of dimethoxycurcumin was degraded in cells treated for 48 h, and incubation with liver microsomes confirmed the limited metabolism of dimethoxycurcumin. Both compounds were rapidly degraded in vivo but dimethoxycurcumin was more stable. Conclusions: Compared with curcumin, dimethoxycurcumin is (a) more stable in cultured cells, (b) more potent in the ability to kill cancer cells by apoptosis, (c) less extensively metabolized in microsomal systems, and (d) more stable in vivo. It is likely that the differential extent of apoptosis induced by curcumin and dimethoxycurcumin in vitro is associated with the metabolite profiling and/or the extent of stability.
Journal of Proteome Research | 2008
Spiros D. Garbis; Stavros I. Tyritzis; Theodoros Roumeliotis; Panagiotis Zerefos; Eugenia G. Giannopoulou; Antonia Vlahou; Sophia Kossida; Jose I. Diaz; Stavros Vourekas; Constantin Tamvakopoulos; Kitty Pavlakis; Despina Sanoudou; Constantinos Constantinides
This study aimed to identify candidate new diagnosis and prognosis markers and medicinal targets of prostate cancer (PCa), using state of the art proteomics. A total of 20 prostate tissue specimens from 10 patients with benign prostatic hyperplasia (BPH) and 10 with PCa (Tumour Node Metastasis [TNM] stage T1-T3) were analyzed by isobaric stable isotope labeling (iTRAQ) and two-dimensional liquid chromatography-tandem mass spectrometry (2DLC-MS/MS) approaches using a hybrid quadrupole time-of-flight system (QqTOF). The study resulted in the reproducible identification of 825 nonredundant gene products (p < or = 0.05) of which 30 exhibited up-regulation (> or =2-fold) and another 35 exhibited down-regulation (< or =0.5-fold) between the BPH and PCa specimens constituting a major contribution toward their global proteomic assessment. Selected findings were confirmed by immunohistochemical analysis of prostate tissue specimens. The proteins determined support existing knowledge and uncover novel and promising PCa biomarkers. The PCa proteome found can serve as a useful aid for the identification of improved diagnostic and prognostic markers and ultimately novel chemopreventive and therapeutic targets.
Arthritis Research & Therapy | 2010
Rebecca Anderson; Àngels Franch; Margarida Castell; Francisco J. Pérez-Cano; Rolf Bräuer; Dirk Pohlers; Mieczyslaw Gajda; Alexandros P. Siskos; Theodora Katsila; Constantin Tamvakopoulos; Una Rauchhaus; Steffen Panzner; Raimund W. Kinne
IntroductionThe objective of this study was to evaluate the efficacy of intravenous (i.v.) injection of liposomally encapsulated dexamethasone phosphate (DxM-P) in comparison to free DxM-P in rats with established adjuvant arthritis (AA). This study focused on polyethylene glycol (PEG)-free liposomes, to minimize known allergic reactions caused by neutral PEG-modified (PEG-ylated) liposomes.MethodsEfficacy was assessed clinically and histologically using standard scores. Non-specific and specific immune parameters were monitored. Activation of peritoneal macrophages was analyzed via cytokine profiling. Pharmacokinetics/biodistribution of DxM in plasma, synovial membrane, spleen and liver were assessed via mass spectrometry.ResultsLiposomal DxM-P (3 × 1 mg/kg body weight; administered intravenously (i.v.) on Days 14, 15 and 16 of AA) suppressed established AA, including histological signs, erythrocyte sedimentation rate, white blood cell count, circulating anti-mycobacterial IgG, and production of interleukin-1beta (IL-1β) and IL-6 by peritoneal macrophages. The suppression was strong and long-lasting. The clinical effects of liposomal DxM-P were dose-dependent for dosages between 0.01 and 1.0 mg/kg. Single administration of 1 mg/kg liposomal DxM-P and 3 × 1 mg/kg of free DxM-P showed comparable effects consisting of a partial and transient suppression. Moreover, the effects of medium-dose liposomal DxM-P (3 × 0.1 mg/kg) were equal (in the short term) or superior (in the long term) to those of high-dose free DxM-P (3 × 1 mg/kg), suggesting a potential dose reduction by a factor between 3 and 10 by liposomal encapsulation. For at least 48 hours after the last injection, the liposomal drug achieved significantly higher levels in plasma, synovial membrane, spleen and liver than the free drug.ConclusionsThis new PEG-free formulation of macrophage-targeting liposomal DxM-P considerably reduces the dose and/or frequency required to treat AA, with a potential to enhance or prolong therapeutic efficacy and limit side-effects also in the therapy of rheumatoid arthritis. Depot and/or recirculation effects in plasma, inflamed joint, liver, and spleen may contribute to this superiority of liposomally encapsulated DxM-P.
Mass Spectrometry Reviews | 2012
Theodora Katsila; Alexandros P. Siskos; Constantin Tamvakopoulos
Peptide and protein drugs have evolved in recent years into mainstream therapeutics, representing a significant portion of the pharmaceutical market. Peptides and proteins exhibit highly diverse structures, broad biological activities as hormones, neurotransmitters, structural proteins, metabolic modulators and therefore have a significant role as both therapeutics and biomarkers. Understanding the metabolism of synthetic or biotechnologically derived peptide and protein drugs is critical for pharmaceutical development as metabolism has a significant impact on drug efficacy and safety. Although the same principles of pharmacokinetics and metabolism of small molecule drugs apply to peptide and protein drugs, there are few notable differences. Moreover, the study of peptide and protein drug metabolism is a rather complicated process which requires sophisticated analytical techniques, and mass spectrometry based approaches have provided the capabilities for efficient and reliable quantification, characterization, and metabolite identification. This review article will focus on the current use of mass spectrometry for the study of the metabolism of peptide and protein drugs.
Embo Molecular Medicine | 2013
Ourania Koltsida; Sergey Karamnov; Katerina Pyrillou; Thad Vickery; Aikaterini-Dimitra Chairakaki; Constantin Tamvakopoulos; Paschalis Sideras; Charles N. Serhan; Evangelos Andreakos
Although specialized pro‐resolving mediators (SPMs) biosynthesized from polyunsaturated fatty acids are critical for the resolution of acute inflammation, the molecules and pathways that induce their production remain elusive. Here, we show that TLR7, a receptor recognizing viral ssRNA and damaged self‐RNA, mobilizes the docosahexaenoic acid (DHA)‐derived biosynthetic pathways that lead to the generation of D‐series SPMs. In mouse macrophages and human monocytes, TLR7 activation triggered production of DHA‐derived monohydroxy metabolome markers and generation of protectin D1 (PD1) and resolvin D1 (RvD1). In mouse allergic airway inflammation, TLR7 activation enhanced production of DHA‐derived SPMs including PD1 and accelerated the catabasis of Th2‐mediated inflammation. D‐series SPMs were critical for TLR7‐mediated resolution of airway inflammation as this effect was lost in Alox15−/− mice, while resolution was enhanced after local administration of PD1 or RvD1. Together, our findings reveal a new previously unsuspected role of TLR7 in the generation of D‐series SPMs and the resolution of allergic airway inflammation. They also identify TLR stimulation as a new approach to drive SPMs and resolution of inflammatory diseases.
Journal of the National Cancer Institute | 2014
Dimitris Stellas; Matthias Szabolcs; Sanjay Koul; Zhe Li; Alexander Polyzos; Constantinos D. Anagnostopoulos; Zoe Cournia; Constantin Tamvakopoulos; Apostolos Klinakis; Argiris Efstratiadis
BACKGROUND Pancreatic ductal adenocarcinoma (PDA) is frequently driven by oncogenic KRAS(KRAS*) mutations. We developed a mouse model of KRAS*-induced PDA and, based on genetic results demonstrating that KRAS* tumorigenicity depends on Myc activity, we evaluated the therapeutic potential of an orally administered anti-Myc drug. METHODS We tested the efficacy of Mycro3, a small-molecule inhibitor of Myc-Max dimerization, in the treatment of mouse PDA (n = 9) and also of xenografts of human pancreatic cancer cell lines (NOD/SCID mice, n = 3-12). Tumor responses to the drug were evaluated by PET/CT imaging, and histological, immunohistochemical, molecular and microarray analyses. The Students t test was used for differences between groups. All statistical tests were two-sided. RESULTS Transgenic overexpression of KRAS* in the pancreas resulted in pancreatic intraepithelial neoplasia in two-week old mice, which developed invasive PDA a week later and became moribund at one month. However, this aggressive form of pancreatic tumorigenesis was effectively prevented by genetic ablation of Myc specifically in the pancreas. We then treated moribund, PDA-bearing mice daily with the Mycro3 Myc-inhibitor. The mice survived until killed at two months. PET/CT image analysis (n = 5) demonstrated marked shrinkage of PDA, while immunohistochemical analyses showed an increase in cancer cell apoptosis and reduction in cell proliferation (treated/untreated proliferation index ratio: 0.29, P < .001, n = 3, each group). Tumor growth was also drastically attenuated in Mycro3-treated NOD/SCID mice (n = 12) carrying orthotopic or heterotopic xenografts of human pancreatic cancer cells (eg, mean tumor weight ± SD of treated heterotopic xenografts vs vehicle-treated controls: 15.2±5.8 mg vs 230.2±43.9 mg, P < .001). CONCLUSION These results provide strong justification for eventual clinical evaluation of anti-Myc drugs as potential chemotherapeutic agents for the treatment of PDA.
Journal of Mass Spectrometry | 2008
Zacharias D. Sofianos; Theodora Katsila; Nikolaos Kostomitsopoulos; Vaggelis Balafas; John Matsoukas; T. Tselios; Constantin Tamvakopoulos
The study of pharmacologically active peptides is central for the understanding of cancer and the development of novel therapeutic approaches. In this context, both qualitative and quantitative determination of bioactive peptides in biological fluids/tissues and their effect on endogenous factors (e.g. hormones) are of great importance. A mass spectrometry-based approach was developed and applied towards the measurement of leuprolide, a peptide drug for the treatment of prostate cancer, in mouse plasma. High-pressure liquid chromatography coupled to a hybrid quadrupole linear ion trap (QqLIT) mass spectrometer, a platform that combines the benefits of triple QqLIT instruments, was employed for the study. Using the described methodology, we established that picomolar concentrations of leuprolide could be measured in mouse plasma (limit of quantification of 0.1 ng/ml). In order to optimize pharmacokinetic properties of analogs of leuprolide, a facile in vivo mouse model was developed and leuprolide concentrations were determined in mouse plasma following intraperitoneal administration. In the same animal model, we demonstrated the versatility of the described MS-based approach by the determination of plasma concentrations of testosterone, an established biomarker for the treatment of prostate cancer. Following dosing with leuprolide, circulating testosterone was increased significantly in comparison to vehicle-treated mice. Finally, in vitro metabolism of leuprolide was evaluated by incubation of leuprolide with mouse kidney membranes, followed by identification of major metabolites by MS. Such studies provide the framework for future evaluation of novel leuprolide analogs with potential therapeutic advantages.
Journal of Proteome Research | 2009
Alexandros P. Siskos; Theodora Katsila; Evangelos Balafas; Nikolaos Kostomitsopoulos; Constantin Tamvakopoulos
The incretin hormone Glucose-dependent Insulinotropic Polypeptide GIP1-42 (approximately 5 kDa), is released postprandially, and rapidly degraded by Dipeptidyl Peptidase IV (DP-IV) to yield the inactive GIP3-42. Methods for the quantification of the pair of GIP peptides include combinations of immunoassays; however, mass spectrometry based approaches can offer the improved selectivity required for the distinction between the active and inactive forms. In this study, we report an LC/ESI-MS/MS approach for the simultaneous absolute quantification of GIP1-42 and GIP3-42 via the corresponding surrogate proteolytic peptide fragments, GIP1-16 and GIP3-16. These surrogate peptides afford approximately 250-fold improvement in lower limits of quantification (LLOQ) compared to the precursor proteins. The LLOQ of the reported method was 5 ng/mL (5-1000 ng/mL) for GIP1-42 and 10 ng/mL (10-1000 ng/mL) for GIP3-42, using 100 microL of mouse plasma. This is the first reported study in which the GIP1-42 and GIP3-42 polypeptides are quantified simultaneously with LC/ESI-MS/MS via their tryptic surrogate peptides. The approach is suitable for both preclinical and clinical pharmacokinetic studies due to the low volume required for the analysis. The described methodology was applied to a pharmacokinetic study, in which enhanced stability of exogenously administered GIP1-42 was demonstrated in mice treated with a DP-IV inhibitor.
Journal of Pharmacology and Experimental Therapeutics | 2011
Theodora Katsila; Evangelos Balafas; George Liapakis; Patrizia Limonta; Marina Montagnani Marelli; Konstantinos Gkountelias; Theodore Tselios; Nikolaos Kostomitsopoulos; John Matsoukas; Constantin Tamvakopoulos
Gonadotropin-releasing hormone (GnRH) receptor agonists have wide clinical applications including the treatment of prostate cancer and endocrine disorders. However, such agonists are characterized by poor pharmacokinetic properties, often requiring repeated administration or special formulations. Therefore, the development of novel peptide analogs with enhanced in vivo stability could potentially provide therapeutic alternatives. The pharmacological evaluation of a bioactive peptide [Des-Gly10,Tyr5(OMe),d-Leu6,Aze-NHEt9]GnRH, analog 1, is presented herein and compared with leuprolide. Peptide stability was evaluated using mouse kidney membrane preparations, followed by a liquid chromatography-tandem mass spectrometry-based approach that afforded identification and quantification of its major metabolites. The analog was significantly more stable in vitro in comparison with leuprolide. In vitro and in vivo stability results correlated well, encouraging us to develop a clinically relevant pharmacokinetic mouse model, which facilitated efficacy measurements using testosterone as a biomarker. Analog 1, an agonist of the GnRH receptor with a binding affinity in the nanomolar range, caused testosterone release in mice that was acutely dose-dependent, an effect blocked by the GnRH receptor antagonist cetrorelix. Repeated dosing studies in mice demonstrated that analog 1 was well tolerated and had potency similar to that of leuprolide, based on plasma and testis testosterone reduction and histopathological findings. Analog 1 also shared with leuprolide similar significant antiproliferative activity on androgen-dependent prostate cancer (LNCaP) cells. On the basis of pharmacokinetic advantages, we expect that analog 1 or analogs based on this new design will be therapeutically advantageous for the treatment of cancer and endocrine disorders.
Bioconjugate Chemistry | 2014
Theodoros Karampelas; Orestis Argyros; Nisar Sayyad; Katerina Spyridaki; Charalampos Pappas; Kevin Morgan; George Kolios; Robert P. Millar; George Liapakis; Andreas G. Tzakos; Demosthenes Fokas; Constantin Tamvakopoulos
Gemcitabine, a drug with established efficacy against a number of solid tumors, has therapeutic limitations due to its rapid metabolic inactivation. The aim of this study was the development of an innovative strategy to produce a metabolically stable analogue of gemcitabine that could also be selectively delivered to prostate cancer (CaP) cells based on cell surface expression of the Gonadotropin Releasing Hormone-Receptor (GnRH-R). The synthesis and evaluation of conjugated molecules, consisting of gemcitabine linked to a GnRH agonist, is presented along with results in androgen-independent prostate cancer models. NMR and ligand binding assays were employed to verify conservation of microenvironments responsible for binding of novel GnRH-gemcitabine conjugates to the GnRH-R. In vitro cytotoxicity, cellular uptake, and metabolite formation of the conjugates were examined in CaP cell lines. Selected conjugates were efficacious in the in vitro assays with one of them, namely, GSG, displaying high antiproliferative activity in CaP cell lines along with significant metabolic and pharmacokinetic advantages in comparison to gemcitabine. Finally, treatment of GnRH-R positive xenografted mice with GSG showed a significant advantage in tumor growth inhibition when compared to gemcitabine.