Demosthenes Fokas
University of Ioannina
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Demosthenes Fokas.
Marine Drugs | 2010
Ioannis Sainis; Demosthenes Fokas; Katerina Vareli; Andreas G. Tzakos; Valentinos Kounnis; Evangelos Briasoulis
Cyanobacterial cyclopeptides, including microcystins and nodularins, are considered a health hazard to humans due to the possible toxic effects of high consumption. From a pharmacological standpoint, microcystins are stable hydrophilic cyclic heptapeptides with a potential to cause cellular damage following uptake via organic anion-transporting polypeptides (OATP). Their intracellular biological effects involve inhibition of catalytic subunits of protein phosphatase 1 (PP1) and PP2, glutathione depletion and generation of reactive oxygen species (ROS). Interestingly, certain OATPs are prominently expressed in cancers as compared to normal tissues, qualifying MC as potential candidates for cancer drug development. In the era of targeted cancer therapy, cyanotoxins comprise a rich source of natural cytotoxic compounds with a potential to target cancers expressing specific uptake transporters. Moreover, their structure offers opportunities for combinatorial engineering to enhance the therapeutic index and resolve organ-specific toxicity issues. In this article, we revisit cyanobacterial cyclopeptides as potential novel targets for anticancer drugs by summarizing existing biomedical evidence, presenting structure-activity data and discussing developmental perspectives.
Molecules | 2011
Andreas G. Tzakos; Demosthenes Fokas; Charlie Johannes; Vassilios Moussis; Eleftheria Hatzimichael; Evangelos Briasoulis
We are currently witnessing a decline in the development of efficient new anticancer drugs, despite the salient efforts made on all fronts of cancer drug discovery. This trend presumably relates to the substantial heterogeneity and the inherent biological complexity of cancer, which hinder drug development success. Protein-protein interactions (PPIs) are key players in numerous cellular processes and aberrant interruption of this complex network provides a basis for various disease states, including cancer. Thus, it is now believed that cancer drug discovery, in addition to the design of single-targeted bioactive compounds, should also incorporate diversity-oriented synthesis (DOS) and other combinatorial strategies in order to exploit the ability of multi-functional scaffolds to modulate multiple protein-protein interactions (biological hubs). Throughout the review, we highlight the chemistry driven approaches to access diversity space for the discovery of small molecules that disrupt oncogenic PPIs, namely the p53-Mdm2, Bcl-2/Bcl-xL-BH3, Myc-Max, and p53-Mdmx/Mdm2 interactions.
Bioconjugate Chemistry | 2014
Theodoros Karampelas; Orestis Argyros; Nisar Sayyad; Katerina Spyridaki; Charalampos Pappas; Kevin Morgan; George Kolios; Robert P. Millar; George Liapakis; Andreas G. Tzakos; Demosthenes Fokas; Constantin Tamvakopoulos
Gemcitabine, a drug with established efficacy against a number of solid tumors, has therapeutic limitations due to its rapid metabolic inactivation. The aim of this study was the development of an innovative strategy to produce a metabolically stable analogue of gemcitabine that could also be selectively delivered to prostate cancer (CaP) cells based on cell surface expression of the Gonadotropin Releasing Hormone-Receptor (GnRH-R). The synthesis and evaluation of conjugated molecules, consisting of gemcitabine linked to a GnRH agonist, is presented along with results in androgen-independent prostate cancer models. NMR and ligand binding assays were employed to verify conservation of microenvironments responsible for binding of novel GnRH-gemcitabine conjugates to the GnRH-R. In vitro cytotoxicity, cellular uptake, and metabolite formation of the conjugates were examined in CaP cell lines. Selected conjugates were efficacious in the in vitro assays with one of them, namely, GSG, displaying high antiproliferative activity in CaP cell lines along with significant metabolic and pharmacokinetic advantages in comparison to gemcitabine. Finally, treatment of GnRH-R positive xenografted mice with GSG showed a significant advantage in tumor growth inhibition when compared to gemcitabine.
Journal of Vascular and Interventional Radiology | 2013
Achilleas Chatziioannou; Alexandros P. Siskos; Dionisios Loxas; Nikolaos Kavatzas; Georgios Agrogiannis; Demosthenes Fokas; Katerina Malagari; Nikolaos Kostomitsopoulos; Olga Tsigkou; Constantin Tamvakopoulos
PURPOSE To assess the safety and feasibility of the targeted delivery of the antiangiogenic drug sorafenib to the liver using transarterial chemoembolization methodology as a novel approach to hepatocellular carcinoma (HCC) therapy. MATERIALS AND METHODS Seven healthy New Zealand white rabbits were used in the study. After placement of a catheter in the common hepatic artery, six rabbits were treated with chemoembolization of sorafenib in iodized oil (Lipiodol) (sorafenib dose 0.1 mg/kg), and one rabbit received Lipiodol only. Liquid chromatography tandem mass spectrometry was used to measure the concentration of sorafenib in the peripheral blood and liver tissue 24 hours and 72 hours after treatment. Histochemical staining of the liver sections and biochemical measurements were performed. RESULTS The administration of sorafenib in Lipiodol emulsions by transarterial chemoembolization resulted in sorafenib concentrations of 794 ng/g ± 240 and 64 ng/g ± 15 in the liver tissue 24 hours and 72 hours after treatment. The average liver-to-serum ratios 24 hours and 72 hours after treatment were approximately 14 and 22. The histochemical staining of the liver tissue sections and aspartate aminotransferase, alanine aminotransferase, γ-glutamyltransferase and total bilirubin concentrations indicated no significant liver damage. CONCLUSIONS Transarterial chemoembolization with sorafenib in Lipiodol is an effective methodology for the localized delivery of this drug to the liver and has possible practical implications in therapeutic interventions for the treatment of hepatocellular carcinoma.
Cancer Research | 2016
Orestis Argyros; Theodoros Karampelas; Xenophon Asvos; Aimilia Varela; Nisar Sayyad; Athanasios Papakyriakou; Constantinos H. Davos; Andreas G. Tzakos; Demosthenes Fokas; Constantin Tamvakopoulos
The potential to heighten the efficacy of antiangiogenic agents was explored in this study based on active targeting of tumor cells overexpressing the gonadotropin-releasing hormone receptor (GnRH-R). The rational design pursued focused on five analogues of a clinically established antiangiogenic compound (sunitinib), from which a lead candidate (SAN1) was conjugated to the targeting peptide [d-Lys(6)]-GnRH, generating SAN1GSC. Conjugation of SAN1 did not disrupt any of its antiangiogenic or cytotoxic properties in GnRH-R-expressing prostate and breast tumor cells. Daily SAN1GSC treatments in mouse xenograft models of castration-resistant prostate cancer resulted in significant tumor growth delay compared with equimolar SAN1 or sunitinib alone. This efficacy correlated with inhibited phosphorylation of AKT and S6, together with reduced Ki-67 and CD31 expression. The superior efficacy of the peptide-drug conjugate was also attributed to the finding that higher amounts of SAN1 were delivered to the tumor site (∼4-fold) following dosing of SAN1GSC compared with equimolar amounts of nonconjugated SAN1. Importantly, treatment with SAN1GSC was associated with minimal hematotoxicity and cardiotoxicity based on measurements of the left ventricular systolic function in treated mice. Our results offer preclinical proof-of-concept for SAN1GSC as a novel molecule that selectively reaches the tumor site and downregulates angiogenesis with negligible cardiotoxicity, thus encouraging its further clinical development and evaluation.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Athanasios D. Spathis; Xenophon Asvos; Despina Ziavra; Theodoros Karampelas; Stavros Topouzis; Zoe Cournia; Xiaobing Qing; Pavlos Alexakos; Lisa M. Smits; Christina Dalla; Hardy J. Rideout; Jens Christian Schwamborn; Constantin Tamvakopoulos; Demosthenes Fokas; Demetrios K. Vassilatis
Significance In Parkinson’s disease (PD), dopamine (DA)-producing neurons gradually degenerate, leading to DA deficiency and to the main symptoms of PD. Current medications do not impede neurodegeneration, but relieve symptoms by replenishing DA; however, their chronic use causes serious side effects. We targeted a protein required for the development and function of DA neurons by designing a chemical compound that, by activating this protein, increases DA and improves symptoms without current treatment side effects while simultaneously preventing neuron loss in PD mice. Our findings point to a monotherapy that can both impede PD progression and concurrently improve symptoms of PD. Parkinson’s disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DAergic) neurons in the substantia nigra and the gradual depletion of dopamine (DA). Current treatments replenish the DA deficit and improve symptoms but induce dyskinesias over time, and neuroprotective therapies are nonexistent. Here we report that Nuclear receptor-related 1 (Nurr1):Retinoid X receptor α (RXRα) activation has a double therapeutic potential for PD, offering both neuroprotective and symptomatic improvement. We designed BRF110, a unique in vivo active Nurr1:RXRα-selective lead molecule, which prevents DAergic neuron demise and striatal DAergic denervation in vivo against PD-causing toxins in a Nurr1-dependent manner. BRF110 also protects against PD-related genetic mutations in patient induced pluripotent stem cell (iPSC)-derived DAergic neurons and a genetic mouse PD model. Remarkably, besides neuroprotection, BRF110 up-regulates tyrosine hydroxylase (TH), aromatic l-amino acid decarboxylase (AADC), and GTP cyclohydrolase I (GCH1) transcription; increases striatal DA in vivo; and has symptomatic efficacy in two postneurodegeneration PD models, without inducing dyskinesias on chronic daily treatment. The combined neuroprotective and symptomatic effects of BRF110 identify Nurr1:RXRα activation as a potential monotherapeutic approach for PD.
Molecular Pharmaceutics | 2017
Theodoros Karampelas; Eleni Skavatsou; Orestis Argyros; Demosthenes Fokas; Constantin Tamvakopoulos
Gemcitabine is a clinically established anticancer agent potent in various solid tumors but limited by its rapid metabolic inactivation and off-target toxicity. We have previously generated a metabolically superior to gemcitabine molecule (GSG) by conjugating gemcitabine to a gonadotropin releasing hormone receptor (GnRH-R) ligand peptide and showed that GSG was efficacious in a castration resistant prostate cancer (CRPC) animal model. The current article provides an in-depth metabolic and mechanistic study of GSG, coupled with toxicity assays that strengthen the potential role of GSG in the clinic. LC-MS/MS based approaches were employed to delineate the metabolism of GSG, its mechanistic cellular uptake, and release of gemcitabine and to quantitate the intracellular levels of gemcitabine and its metabolites (active dFdCTP and inactive dFdU) resulting from GSG. The GnRH-R agonistic potential of GSG was investigated by quantifying the testosterone levels in animals dosed daily with GSG, while an in vitro colony forming assay together with in vivo whole blood measurements were performed to elucidate the hematotoxicity profile of GSG. Stability showed that the major metabolite of GSG is a more stable nonapeptide that could prolong gemcitabines bioavailability. GSG acted as a prodrug and offered a metabolic advantage compared to gemcitabine by generating higher and steadier levels of dFdCTP/dFdU ratio, while intracellular release of gemcitabine from GSG in DU145 CRPC cells depended on nucleoside transporters. Daily administrations in mice showed that GSG is a potent GnRH-R agonist that can also cause testosterone ablation without any observed hematotoxicity. In summary, GSG could offer a powerful and unique pharmacological approach to prostate cancer treatment: a single nontoxic molecule that can be used to reach the tumor site selectively with superior to gemcitabine metabolism, biodistribution, and safety while also agonistically ablating testosterone levels.
Oncotarget | 2017
Orestis Argyros; Theodoros Karampelas; Aimilia Varela; Xenophon Asvos; Athanasios Papakyriakou; Adamantia Agalou; Dimitris Beis; Constantinos H. Davos; Demosthenes Fokas; Constantin Tamvakopoulos
The clinical efficacy of antiangiogenic small molecules (e.g., sunitinib) in breast carcinoma has largely failed with substantial off-target toxicity. We rationally designed and evaluated preclinically a novel sunitinib analogue, SAP, with favourable pharmacological properties and the ability to be readily conjugated to a targeting peptide or antibody for active tumour targeting. SAP was evaluated in silico and in vitro in order to verify target engagement (e.g., VEGFR2). Pharmacokinetic and biodistribution parameters were determined in mice using LC-MS/MS. SAP efficacy was tested in two breast cancer xenograft and two syngeneic animal models and pharmacodynamic evaluation was accomplished using phosphokinase assays and immunohistochemistry. Cardiac and blood toxicity of SAP were also monitored. SAP retained the antiangiogenic and cytotoxic properties of the parental molecule with an increased blood exposure and tumor accumulation compared to sunitinib. SAP proved efficacious in all animal models. Tumors from SAP treated animals had significantly decreased Ki-67 and CD31 markers and reduced levels of phosphorylated AKT, ERK and S6 compared to vehicle treated animals. In mice dosed with SAP there was negligible hematotoxicity, while cardiac function measurements showed a reduction in the percentage left ventricular fractional shortening compared to vehicle treated animals. In conclusion, SAP is a novel rationally designed conjugatable small antiangiogenic molecule, efficacious in preclinical models of breast cancer.
Journal of Physical Chemistry B | 2010
Olga C. Vangeli; George E. Romanos; K. Beltsios; Demosthenes Fokas; Evangelos P. Kouvelos; Konstantinos L. Stefanopoulos; N.K. Kanellopoulos
Journal of Membrane Science | 2010
Olga C. Vangeli; George E. Romanos; K. Beltsios; Demosthenes Fokas; Chrysoula P. Athanasekou; N.K. Kanellopoulos