Corbin Bachmeier
Open University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Corbin Bachmeier.
Annals of Neurology | 2014
Benoit Mouzon; Corbin Bachmeier; Austin Ferro; Joseph-Olubunmi Ojo; Gogce Crynen; Christopher M. Acker; Peter Davies; Michael Mullan; William Stewart; Fiona Crawford
Traumatic brain injury (TBI) is a recognized risk factor for later development of neurodegenerative disease. However, the mechanisms contributing to neurodegeneration following TBI remain obscure.
Journal of Neurotrauma | 2012
Benoit Mouzon; Helena Chaytow; Gogce Crynen; Corbin Bachmeier; Janice Stewart; Michael Mullan; William Stewart; Fiona Crawford
Concussion or mild traumatic brain injury (mTBI) represents the most common type of brain injury. However, in contrast with moderate or severe injury, there are currently few non-invasive experimental studies that investigate the cumulative effects of repetitive mTBI using rodent models. Here we describe and compare the behavioral and pathological consequences in a mouse model of single (s-mTBI) or repetitive injury (r-mTBI, five injuries given at 48u2009h intervals) administered by an electromagnetic controlled impactor. Our results reveal that a single mTBI is associated with transient motor and cognitive deficits as demonstrated by rotarod and the Barnes Maze respectively, whereas r-mTBI results in more significant deficits in both paradigms. Histology revealed no overt cell loss in the hippocampus, although a reactive gliosis did emerge in hippocampal sector CA1 and in the deeper cortical layers beneath the injury site in repetitively injured animals, where evidence of focal injury also was observed in the brainstem and cerebellum. Axonal injury, manifest as amyloid precursor protein immunoreactive axonal profiles, was present in the corpus callosum of both injury groups, though more evident in the r-mTBI animals. Our data demonstrate that this mouse model of mTBI is reproducible, simple, and noninvasive, with behavioral impairment after a single injury and increasing deficits after multiple injuries accompanied by increased focal and diffuse pathology. As such, this model may serve as a suitable platform with which to explore repetitive mTBI relevant to human brain injury.
Frontiers in Behavioral Neuroscience | 2014
Joseph Ojo; M. Banks Greenberg; Paige Leary; Benoit Mouzon; Corbin Bachmeier; Michael Mullan; David M. Diamond; Fiona Crawford
Co-morbid mild traumatic brain injury (mTBI) and post-traumatic stress disorder (PTSD) has become the signature disorder for returning combat veterans. The clinical heterogeneity and overlapping symptomatology of mTBI and PTSD underscore the need to develop a preclinical model that will enable the characterization of unique and overlapping features and allow discrimination between both disorders. This study details the development and implementation of a novel experimental paradigm for PTSD and combined PTSD-mTBI. The PTSD paradigm involved exposure to a danger-related predator odor under repeated restraint over a 21 day period and a physical trauma (inescapable footshock). We administered this paradigm alone, or in combination with a previously established mTBI model. We report outcomes of behavioral, pathological and biochemical profiles at an acute timepoint. PTSD animals demonstrated recall of traumatic memories, anxiety and an impaired social behavior. In both mTBI and combination groups there was a pattern of disinhibitory like behavior. mTBI abrogated both contextual fear and impairments in social behavior seen in PTSD animals. No major impairment in spatial memory was observed in any group. Examination of neuroendocrine and neuroimmune responses in plasma revealed a trend toward increase in corticosterone in PTSD and combination groups, and an apparent increase in Th1 and Th17 proinflammatory cytokine(s) in the PTSD only and mTBI only groups respectively. In the brain there were no gross neuropathological changes in any groups. We observed that mTBI on a background of repeated trauma exposure resulted in an augmentation of axonal injury and inflammatory markers, neurofilament L and ICAM-1 respectively. Our observations thus far suggest that this novel stress-trauma-related paradigm may be a useful model for investigating further the overlapping and distinct spatio-temporal and behavioral/biochemical relationship between mTBI and PTSD experienced by combat veterans.
Journal of Neuropathology and Experimental Neurology | 2016
Joseph Ojo; Benoit Mouzon; Moustafa Algamal; Paige Leary; Cillian Lynch; Laila Abdullah; James E. Evans; Michael Mullan; Corbin Bachmeier; William Stewart; Fiona Crawford
Exposure to repetitive mild traumatic brain injury (mTBI) is a risk factor for chronic traumatic encephalopathy, which is characterized by patchy deposition of hyperphosphorylated tau aggregates in neurons and astrocytes at the depths of cortical sulci. We developed an mTBI paradigm to explore effects of repetitive concussive-type injury over several months in mice with a human tau genetic background (hTau). Two injuries were induced in the hTau mice weekly over a period of 3 or 4 months and the effects were compared with those in noninjured sham animals. Behavioral and in vivo measures and detailed neuropathological assessments were conducted 6 months after the first injury. Our data confirm impairment in cerebral blood flow and white matter damage. This was accompanied by a 2-fold increase in total tau levels and mild increases in tau oligomers/conformers and pTau (Thr231) species in brain gray matter. There was no evidence of neurofibrillary/astroglial tangles, neuropil threads, or perivascular foci of tau immunoreactivity. There were neurobehavioral deficits (ie, disinhibition and impaired cognitive performance) in the mTBI animals. These data support the relevance of this new mTBI injury model for studying the consequences of chronic repetitive mTBI in humans, and the role of tau in TBI.
Neurodegenerative Diseases | 2013
Corbin Bachmeier; Daniel H. Paris; David Beaulieu-Abdelahad; Benoit Mouzon; Michael Mullan; Fiona Crawford
Background: While apolipoprotein E4 (apoE4) is highly correlated with the development of Alzheimer’s disease (AD), its role in AD pathology and, in particular, beta-amyloid (Aβ) removal from the brain, is not clearly defined. Objective: To elucidate the influence of apoE on the clearance of Aβ across the blood-brain barrier (BBB). Methods: Aβ(1–42) was intracerebrally administered to transgenic mice expressing human apoE isoforms and examined in the periphery. Results: apoE3 and apoE4 mice had 5 times and 2 times, respectively, more Aβ(1–42) appearing in the plasma than wild-type or apoE knockout mice, indicating an enhanced clearance of Aβ from the brain to the periphery. In vitro, unbound basolateral apoE3 (i.e., not bound to Aβ), and to a lesser extent unbound apoE4, at concentrations ≤10 nm facilitated basolateral-to-apical fluorescein-Aβ(1–42) transcytosis across a BBB model, while apoE isoforms bound to Aβ significantly disrupted Aβ transcytosis. Additionally, following apical exposure to the BBB model, we found that apoE4 bound to Aβ is able to penetrate the BBB more readily than apoE3 bound to Aβ and does so via the RAGE (receptor for advanced glycation end products) transporter. Conclusion: These studies indicate a multifaceted, isoform-dependent role for apoE in the exchange of Aβ across the BBB and may partially explain the association of apoE4 and Aβ brain accumulation in AD.
Bioinformation | 2011
Daniel H. Paris; Venkat Mathura; Ghania Ait-Ghezala; David Beaulieu-Abdelahad; Nikunj Patel; Corbin Bachmeier; Michael Mullan
Alzheimers disease (AD) is characterized by the brain accumulation of Aβ peptides and by the presence of neurofibrillary tangles. Aβ is believed to play an important role in AD and it has been shown that certain flavonoids can affect Aβ production. Recently, it was suggested that the Aβ lowering properties of flavonoids are mediated by a direct inhibition the β-secretase (BACE-1) activity, the rate limiting enzyme responsible for the production of Aβ peptides. Westernblots and ELISAs were employed to monitor the impact of flavonoids on amyloid precursor protein processing and Aβ production. A cell free chemoluminescent assay using human recombinant BACE-1 was used to assess the effect of flavonoids on BACE-1 activity. The effect of flavonoids on NFκB activation was determined by using a stable NFκB luciferase reporter cell line. Molecular docking simulations were performed to predict the binding of flavonoids to the BACE-1 catalytic site. Real time quantitative PCR was used to determine the effect of flavonoids on BACE-1 transcription. We show in a cell free assay that flavonoids are only weak inhibitors of BACE-1 activity. Docking simulation studies with different BACE-1 structures also suggest that flavonoids are poor BACE-1 inhibitors as they appear to adopt various docking poses in the active site pocket and have weak docking scores that differ as a function of the BACE-1 structures studied. Moreover, a weak correlation was observed between the effect of flavonoids on Aβ production in vitro and their ability to lower BACE-1 activity suggesting that the Aβ lowering properties of flavonoids in whole cells are not mediated via direct inhibition of BACE-1 activity. We found however a strong correlation between the inhibition of NFκB activation by flavonoids and their Aβ lowering properties suggesting that flavonoids inhibit Aβ production in whole cells via NFκB related mechanisms. As NFκB has been shown to regulate BACE-1 expression, we show that NFκB lowering flavonoids inhibit BACE-1 transcription in human neuronal SH-SY5Y cells. Altogether, our data suggest that flavonoids inhibit Aβ and sAPPβ production by regulating BACE-1 expression and not by directly inhibiting BACE-1 activity.
Neuromolecular Medicine | 2014
Corbin Bachmeier; Ben Shackleton; Joseph Ojo; Daniel Paris; Michael Mullan; Fiona Crawford
Recent findings indicate an isoform-specific role for apolipoprotein E (apoE) in the elimination of beta-amyloid (Aβ) from the brain. ApoE is closely associated with various lipoprotein receptors, which contribute to Aβ brain removal via metabolic clearance or transit across the blood–brain barrier (BBB). These receptors are subject to ectodomain shedding at the cell surface, which alters endocytic transport and mitigates Aβ elimination. To further understand the manner in which apoE influences Aβ brain clearance, these studies investigated the effect of apoE on lipoprotein receptor shedding. Consistent with prior reports, we observed an increased shedding of the low-density lipoprotein receptor (LDLR) and the LDLR-related protein 1 (LRP1) following Aβ exposure in human brain endothelial cells. When Aβ was co-treated with each apoE isoform, there was a reduction in Aβ-induced shedding with apoE2 and apoE3, while lipoprotein receptor shedding in the presence of apoE4 remained increased. Likewise, intracranial administration of Aβ to apoE-targeted replacement mice (expressing the human apoE isoforms) resulted in an isoform-dependent effect on lipoprotein receptor shedding in the brain (apoE4xa0>xa0apoE3xa0>xa0apoE2). Moreover, these results show a strong inverse correlation with our prior work in apoE transgenic mice in which apoE4 animals showed reduced Aβ clearance across the BBB compared to apoE3 animals. Based on these results, apoE4 appears less efficient than other apoE isoforms in regulating lipoprotein receptor shedding, which may explain the differential effects of these isoforms in removing Aβ from the brain.
The Journal of Neuroscience | 2010
Daniel Paris; Nowel Ganey; Magdalena Banasiak; Vincent Laporte; Nikunj Patel; Myles Mullan; Susan F. Murphy; Gi-Taek Yee; Corbin Bachmeier; Christopher Ganey; David Beaulieu-Abdelahad; Venkatarajan S. Mathura; Steven Brem; Michael Mullan
Alzheimers disease (AD) is the most common form of dementia among the aging population and is characterized pathologically by the progressive intracerebral accumulation of β-amyloid (Aβ) peptides and neurofibrillary tangles. The level of proangiogenic growth factors and inflammatory mediators with proangiogenic activity is known to be elevated in AD brains which has led to the supposition that the cerebrovasculature of AD patients is in a proangiogenic state. However, angiogenesis depends on the balance between proangiogenic and antiangiogenic factors and the brains of AD patients also show an accumulation of endostatin and Aβ peptides which have been shown to be antiangiogenic. To determine whether angiogenesis is compromised in the brains of two transgenic mouse models of AD overproducing Aβ peptides (Tg APPsw and Tg PS1/APPsw mice), we assessed the growth and vascularization of orthotopically implanted murine gliomas since they require a high degree of angiogenesis to sustain their growth. Our data reveal that intracranial tumor growth and angiogenesis is significantly reduced in Tg APPsw and Tg PS1/APPsw mice compared with their wild-type littermates. In addition, we show that Aβ inhibits the angiogenesis stimulated by glioma cells when cocultured with human brain microvascular cells on a Matrigel layer. Altogether our data suggest that the brain of transgenic mouse models of AD does not constitute a favorable environment to support neoangiogenesis and may explain why vascular insults synergistically precipitate the cognitive presentation of AD.
Annals of clinical and translational neurology | 2018
Benoit Mouzon; Corbin Bachmeier; Joseph Ojo; Christopher M. Acker; Scott Ferguson; Daniel Paris; Ghania Ait-Ghezala; Gogce Crynen; Peter Davies; Michael Mullan; William Stewart; Fiona Crawford
Exposure to repetitive concussion, or mild traumatic brain injury (mTBI), has been linked with increased risk of long‐term neurodegenerative changes, specifically chronic traumatic encephalopathy (CTE). To date, preclinical studies largely have focused on the immediate aftermath of mTBI, with no literature on the lifelong consequences of mTBI in these models. This study provides the first account of lifelong neurobehavioral and histological consequences of repetitive mTBI providing unique insight into the constellation of evolving and ongoing pathologies with late survival.
Fluids and Barriers of the CNS | 2016
Ben Shackleton; Fiona Crawford; Corbin Bachmeier
BackgroundTransport across the blood–brain barrier (BBB) is an important mediator of beta-amyloid (Aβ) accumulation in the brain and a contributing factor in the pathogenesis of Alzheimer’s disease (AD). One of the receptors responsible for the transport of Aβ in the BBB is the low density lipoprotein receptor-related protein 1 (LRP1). LRP1 is susceptible to proteolytic shedding at the cell surface, which prevents endocytic transport of ligands. Previously, we reported a strong inverse correlation between LRP1 shedding in the brain and Aβ transit across the BBB. Several proteases contribute to the ectodomain shedding of LRP1 including the α-secretase, a desintegrin and metalloproteinase domain containing protein 10 (ADAM10).MethodsThe role of ADAM10 in the shedding of LRP1 and Aβ BBB clearance was assessed through pharmacological inhibition of ADAM10 in an in vitro model of the BBB and through the use of ADAM10 endothelial specific knock-out mice. In addition, an acute treatment paradigm with an ADAM10 inhibitor was also tested in an AD mouse model to assess the effect of ADAM10 inhibition on LRP1 shedding and Aβbrain accumulation.ResultsIn the current studies, inhibition of ADAM10 reduced LRP1 shedding in brain endothelial cultures and increased Aβ42 transit across an in vitro model of the BBB. Similarly, transgenic ADAM10 endothelial knockout mice displayed lower LRP1 shedding in the brain and significantly enhanced Aβ clearance across the BBB compared to wild-type animals. Acute treatment with the ADAM10-selective inhibitor GI254023X in an AD mouse model substantially reduced brain LRP1 shedding and increased Aβ40 levels in the plasma, indicating enhanced Aβ transit from the brain to the periphery. Furthermore, both soluble and insoluble Aβ40 and Aβ42 brain levels were decreased following GI254023X treatment, but these effects lacked statistical significance.ConclusionsThese studies demonstrate a role for ADAM10 in the ectodomain shedding of LRP1 in the brain and the clearance of Aβ across the BBB, which may provide a novel strategy for attenuating Aβ accumulation in the AD brain.