Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cord F. Stähler is active.

Publication


Featured researches published by Cord F. Stähler.


Genome Biology | 2013

A blood based 12-miRNA signature of Alzheimer disease patients.

Petra Leidinger; Christina Backes; Stephanie Deutscher; Katja Schmitt; Sabine C. Mueller; Karen Frese; Jan Haas; Klemens Ruprecht; Friedemann Paul; Cord F. Stähler; Christoph J. G. Lang; Benjamin Meder; Tamas Bartfai; Eckart Meese; Andreas Keller

BackgroundAlzheimer disease (AD) is the most common form of dementia but the identification of reliable, early and non-invasive biomarkers remains a major challenge. We present a novel miRNA-based signature for detecting AD from blood samples.ResultsWe apply next-generation sequencing to miRNAs from blood samples of 48 AD patients and 22 unaffected controls, yielding a total of 140 unique mature miRNAs with significantly changed expression levels. Of these, 82 have higher and 58 have lower abundance in AD patient samples. We selected a panel of 12 miRNAs for an RT-qPCR analysis on a larger cohort of 202 samples, comprising not only AD patients and healthy controls but also patients with other CNS illnesses. These included mild cognitive impairment, which is assumed to represent a transitional period before the development of AD, as well as multiple sclerosis, Parkinson disease, major depression, bipolar disorder and schizophrenia. miRNA target enrichment analysis of the selected 12 miRNAs indicates an involvement of miRNAs in nervous system development, neuron projection, neuron projection development and neuron projection morphogenesis. Using this 12-miRNA signature, we differentiate between AD and controls with an accuracy of 93%, a specificity of 95% and a sensitivity of 92%. The differentiation of AD from other neurological diseases is possible with accuracies between 74% and 78%. The differentiation of the other CNS disorders from controls yields even higher accuracies.ConclusionsThe data indicate that deregulated miRNAs in blood might be used as biomarkers in the diagnosis of AD or other neurological diseases.


Nucleic Acids Research | 2016

Distribution of miRNA expression across human tissues.

Nicole Ludwig; Petra Leidinger; Kurt Becker; Christina Backes; Tobias Fehlmann; Christian P. Pallasch; Steffi Rheinheimer; Benjamin Meder; Cord F. Stähler; Eckart Meese; Andreas Keller

We present a human miRNA tissue atlas by determining the abundance of 1997 miRNAs in 61 tissue biopsies of different organs from two individuals collected post-mortem. One thousand three hundred sixty-four miRNAs were discovered in at least one tissue, 143 were present in each tissue. To define the distribution of miRNAs, we utilized a tissue specificity index (TSI). The majority of miRNAs (82.9%) fell in a middle TSI range i.e. were neither specific for single tissues (TSI > 0.85) nor housekeeping miRNAs (TSI < 0.5). Nonetheless, we observed many different miRNAs and miRNA families that were predominantly expressed in certain tissues. Clustering of miRNA abundances revealed that tissues like several areas of the brain clustered together. Considering -3p and -5p mature forms we observed miR-150 with different tissue specificity. Analysis of additional lung and prostate biopsies indicated that inter-organism variability was significantly lower than inter-organ variability. Tissue-specific differences between the miRNA patterns appeared not to be significantly altered by storage as shown for heart and lung tissue. MiRNAs TSI values of human tissues were significantly (P = 10−8) correlated with those of rats; miRNAs that were highly abundant in certain human tissues were likewise abundant in according rat tissues. We implemented a web-based repository enabling scientists to access and browse the data (https://ccb-web.cs.uni-saarland.de/tissueatlas).


Nature Biotechnology | 2010

High-fidelity gene synthesis by retrieval of sequence-verified DNA identified using high-throughput pyrosequencing

Mark Matzas; Peer F. Stähler; Nathalie Kefer; Nicole Siebelt; Valesca Boisguerin; Jack T. Leonard; Andreas Keller; Cord F. Stähler; Pamela Häberle; Baback Gharizadeh; Farbod Babrzadeh; George M. Church

The construction of synthetic biological systems involving millions of nucleotides is limited by the lack of high-quality synthetic DNA. Consequently, the field requires advances in the accuracy and scale of chemical DNA synthesis and in the processing of longer DNA assembled from short fragments. Here we describe a highly parallel and miniaturized method, called megacloning, for obtaining high-quality DNA by using next-generation sequencing (NGS) technology as a preparative tool. We demonstrate our method by processing both chemically synthesized and microarray-derived DNA oligonucleotides with a robotic system for imaging and picking beads directly off of a high-throughput pyrosequencing platform. The method can reduce error rates by a factor of 500 compared to the starting oligonucleotide pool generated by microarray. We use DNA obtained by megacloning to assemble synthetic genes. In principle, millions of DNA fragments can be sequenced, characterized and sorted in a single megacloner run, enabling constructive biology up to the megabase scale.The construction of synthetic biological systems involving millions of nucleotides is limited by the lack of high-quality synthetic DNA. Consequently, the field requires advances in the accuracy and scale of chemical DNA synthesis and in the processing of longer DNA assembled from short fragments. Here we describe a highly parallel and miniaturized method, called megacloning, for obtaining high-quality DNA by using next-generation sequencing (NGS) technology as a preparative tool. We demonstrate our method by processing both chemically synthesized and microarray-derived DNA oligonucleotides with a robotic system for imaging and picking beads directly off of a high-throughput pyrosequencing platform. The method can reduce error rates by a factor of 500 compared to the starting oligonucleotide pool generated by microarray. We use DNA obtained by megacloning to assemble synthetic genes. In principle, millions of DNA fragments can be sequenced, characterized and sorted in a single megacloner run, enabling constructive biology up to the megabase scale.


Multiple Sclerosis Journal | 2014

Comprehensive analysis of microRNA profiles in multiple sclerosis including next-generation sequencing

Andreas Keller; Petra Leidinger; Florian Steinmeyer; Cord F. Stähler; Andre Franke; Georg Hemmrich-Stanisak; Andreas Kappel; Ian Wright; Jan Dörr; Friedemann Paul; Ricarda Diem; Beatrice Tocariu-Krick; Benjamin Meder; Christina Backes; Eckart Meese; Klemens Ruprecht

Background: MicroRNAs (miRNAs) are short, noncoding RNAs with gene regulatory functions whose expression profiles may serve as disease biomarkers. Objective: The objective of this study was to perform a comprehensive analysis of miRNA expression profiles in blood of patients with a clinically isolated syndrome (CIS) or relapsing–remitting multiple sclerosis (RRMS) including next-generation sequencing (NGS). Methods: miRNA expression was analyzed in whole blood samples from treatment-naïve patients with CIS (n = 25) or RRMS (n = 25) and 50 healthy controls by NGS, microarray analysis, and quantitative real-time polymerase chain reaction (qRT-PCR). Results: In patients with CIS/RRMS, NGS and microarray analysis identified 38 and eight significantly deregulated miRNAs, respectively. Three of these miRNAs were found to be significantly up- (hsa-miR-16-2-3p) or downregulated (hsa-miR-20a-5p, hsa-miR-7-1-3p) by both methods. Another five of the miRNAs significantly deregulated in the NGS screen showed the same direction of regulation in the microarray analysis. qRT-PCR confirmed the direction of regulation for all eight and was significant for three miRNAs. Conclusions: This study identifies a set of miRNAs deregulated in CIS/RRMS and reconfirms the previously reported underexpression of hsa-miR-20a-5p in MS. hsa-miR-20a-5p and the other validated miRNAs may represent promising candidates for future evaluation as biomarkers for MS and could be of relevance in the pathophysiology of this disease.


Genome Research | 2009

Microarray-based multicycle-enrichment of genomic subsets for targeted next-generation sequencing

Daniel Summerer; Haiguo Wu; Bettina Haase; Yang Cheng; Nadine Schracke; Cord F. Stähler; Mark S. Chee; Peer F. Stähler; Markus Beier

The lack of efficient high-throughput methods for enrichment of specific sequences from genomic DNA represents a key bottleneck in exploiting the enormous potential of next-generation sequencers. Such methods would allow for a systematic and targeted analysis of relevant genomic regions. Recent studies reported sequence enrichment using a hybridization step to specific DNA capture probes as a possible solution to the problem. However, so far no method has provided sufficient depths of coverage for reliable base calling over the entire target regions. We report a strategy to multiply the enrichment performance and consequently improve depth and breadth of coverage for desired target sequences by applying two iterative cycles of hybridization with microfluidic Geniom biochips. Using this strategy, we enriched and then sequenced the cancer-related genes BRCA1 and TP53 and a set of 1000 individual dbSNP regions of 500 bp using Illumina technology. We achieved overall enrichment factors of up to 1062-fold and average coverage depths of 470-fold. Combined with high coverage uniformity, this resulted in nearly complete consensus coverages with >86% of target region covered at 20-fold or higher. Analysis of SNP calling accuracies after enrichment revealed excellent concordance, with the reference sequence closely mirroring the previously reported performance of Illumina sequencing conducted without sequence enrichment.


Genomics | 2010

Targeted high throughput sequencing of a cancer-related exome subset by specific sequence capture with a fully automated microarray platform

Daniel Summerer; Nadine Schracke; Haiguo Wu; Yang Cheng; Stephan Bau; Cord F. Stähler; Peer F. Stähler; Markus Beier

Sequence capture methods for targeted next generation sequencing promise to massively reduce cost of genomics projects compared to untargeted sequencing. However, evaluated capture methods specifically dedicated to biologically relevant genomic regions are rare. Whole exome capture has been shown to be a powerful tool to discover the genetic origin of disease and provides a reduction in target size and thus calculative sequencing capacity of >90-fold compared to untargeted whole genome sequencing. For further cost reduction, a valuable complementing approach is the analysis of smaller, relevant gene subsets but involving large cohorts of samples. However, effective adjustment of target sizes and sample numbers is hampered by the limited scalability of enrichment systems. We report a highly scalable and automated method to capture a 480 Kb exome subset of 115 cancer-related genes using microfluidic DNA arrays. The arrays are adaptable from 125 Kb to 1 Mb target size and/or one to eight samples without barcoding strategies, representing a further 26 - 270-fold reduction of calculative sequencing capacity compared to whole exome sequencing. Illumina GAII analysis of a HapMap genome enriched for this exome subset revealed a completeness of >96%. Uniformity was such that >68% of exons had at least half the median depth of coverage. An analysis of reference SNPs revealed a sensitivity of up to 93% and a specificity of 98.2% or higher.


Clinical Chemistry | 2014

Influence of the Confounding Factors Age and Sex on MicroRNA Profiles from Peripheral Blood

Benjamin Meder; Christina Backes; Jan Haas; Petra Leidinger; Cord F. Stähler; Thomas Großmann; Britta Vogel; Karen Frese; Evangelos Giannitsis; Hugo A. Katus; Eckart Meese; Andreas Keller

BACKGROUND MicroRNAs (miRNAs) measured from blood samples are promising minimally invasive biomarker candidates that have been extensively studied in several case-control studies. However, the influence of age and sex as confounding variables remains largely unknown. METHODS We systematically explored the impact of age and sex on miRNAs in a cohort of 109 physiologically unaffected individuals whose blood was characterized by microarray technology (stage 1). We also investigated an independent cohort from a different institution consisting of 58 physiologically unaffected individuals having a similar mean age but with a smaller age distribution. These samples were measured by use of high-throughput sequencing (stage 2). RESULTS We detected 318 miRNAs that were significantly correlated with age in stage 1 and, after adjustment for multiple testing of 35 miRNAs, remained statistically significant. Regarding sex, 144 miRNAs showed significant dysregulation. Here, no miRNA remained significant after adjustment for multiple testing. In the high-throughput datasets of stage 2, we generally observed a smaller number of significant associations, mainly as an effect of the smaller cohort size and age distribution. Nevertheless, we found 7 miRNAs that were correlated with age, of which 5 were concordant with stage 1. CONCLUSIONS The age distribution of individuals recruited for case-control studies needs to be carefully considered, whereas sex may be less confounding. To support the translation of miRNAs into clinical application, we offer a web-based application (http://www.ccb.uni-saarland.de/mirnacon) to test individual miRNAs or miRNA signatures for their likelihood of being influenced.


Alzheimers & Dementia | 2016

Validating Alzheimer's disease micro RNAs using next-generation sequencing.

Andreas Keller; Christina Backes; Jan Haas; Petra Leidinger; Walter Maetzler; Christian Deuschle; Daniela Berg; Christoph Ruschil; Valentina Galata; Klemens Ruprecht; Cord F. Stähler; Maximilian Würstle; Daniel Sickert; Manfred Gogol; Benjamin Meder; Eckart Meese

Molecular biomarkers for Alzheimers disease (AD) can support detection and improved care for patients, but novel candidates require verification. We previously reported a 12‐micro RNA (miRNA) blood‐based signature using next‐generation sequencing (NGS) of 54 AD cases and 22 controls.


Analytical Chemistry | 2015

Influence of Next-Generation Sequencing and Storage Conditions on miRNA Patterns Generated from PAXgene Blood

Christina Backes; Petra Leidinger; Gabriela Altmann; Maximilian Wuerstle; Benjamin Meder; Valentina Galata; Sabine C. Mueller; Daniel Sickert; Cord F. Stähler; Eckart Meese; Andreas Keller

Whole blood derived miRNA signatures determined by Next-Generation Sequencing (NGS) offer themselves as future minimally invasive biomarkers for various human diseases. The PAXgene system is a commonly used blood storage system for miRNA analysis. Central to all miRNA analyses that aim to identify disease specific miRNA signatures, is the question of stability and variability of the miRNA profiles that are generated by NGS. We characterized the influence of five different conditions on the genome wide miRNA expression pattern of human blood isolated in PAXgene RNA tubes. In detail, we analyzed 15 miRNomes from three individuals. The blood was subjected to different numbers of freeze/thaw cycles and analyzed for the influence of storage at -80 or 8 °C. We also determined the influence of blood collection and NGS preparations on the miRNA pattern isolated from a single individual, which has been sequenced 10 times. Here, five PAXGene tubes were consecutively collected that have been split in two replicates, representing two experimental batches. All samples were analyzed by Illumina NGS. For each sample, approximately 20 million NGS reads have been generated. Hierarchical clustering and Principal Component Analysis (PCA) showed an influence of the different conditions on the miRNA patterns. The effects of the different conditions on miRNA abundance are, however, smaller than the differences that are due to interindividual variability. We also found evidence for an influence of the NGS measurement on the miRNA pattern. Specifically, hsa-miR-1271-5p and hsa-miR-182-5p showed coefficients of variation above 100% indicating a strong influence of the NGS protocol on the abundance of these miRNAs.


New Biotechnology | 2010

A flexible and fully integrated system for amplification, detection and genotyping of genomic DNA targets based on microfluidic oligonucleotide arrays

Daniel Summerer; Dona Hevroni; Amit Jain; Olga Oldenburger; Jefferson Parker; Anthony Caruso; Cord F. Stähler; Peer F. Stähler; Markus Beier

A strategy allowing for amplification, detection and genotyping of different genomic DNA targets in a single reaction container is described. The method makes use of primer-directed solution-phase amplification with integrated labeling in a closed, microfluidic oligonucleotide array. Selective array probes allow for subsequent detection and genotyping of generated amplicons by hybridization. The array contains up to 15,624 programmable features that can be designed, de novo synthesized and tested within 24 hours using an automated benchtop microarray synthesizer. This enables rapid prototyping and adaptation of the system to newly emerging targets such as pathogenic bacterial or viral subtypes. The system was evaluated by amplifying and detecting different loci of viral (HPV), bacterial (Bacillus sp.) and eukaryotic (human) genomes. Multiplex PCR and semi-quantitative detection with excellent detection limits of <100 target copies is hereby demonstrated. The high automation grade of the system reduces contamination risk and workload and should enhance safety and reproducibility.

Collaboration


Dive into the Cord F. Stähler's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Beier

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge