Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corey Nislow is active.

Publication


Featured researches published by Corey Nislow.


Science | 2010

The Genetic Landscape of a Cell

Michael Costanzo; Anastasia Baryshnikova; Jeremy Bellay; Yungil Kim; Eric D. Spear; Carolyn S. Sevier; Huiming Ding; Judice L. Y. Koh; Kiana Toufighi; Jeany Prinz; Robert P. St.Onge; Benjamin VanderSluis; Taras Makhnevych; Franco J. Vizeacoumar; Solmaz Alizadeh; Sondra Bahr; Renee L. Brost; Yiqun Chen; Murat Cokol; Raamesh Deshpande; Zhijian Li; Zhen Yuan Lin; Wendy Liang; Michaela Marback; Jadine Paw; Bryan Joseph San Luis; Ermira Shuteriqi; Amy Hin Yan Tong; Nydia Van Dyk; Iain M. Wallace

Making Connections Genetic interaction profiles highlight cross-connections between bioprocesses, providing a global view of cellular pleiotropy, and enable the prediction of genetic network hubs. Costanzo et al. (p. 425) performed a pairwise fitness screen covering approximately one-third of all potential genetic interactions in yeast, examining 5.4 million gene-gene pairs and generating quantitative profiles for ∼75% of the genome. Of the pairwise interactions tested, about 3% of the genes investigated interact under the conditions tested. On the basis of these data, a reference map for the yeast genetic network was created. A genome-wide interaction map of yeast identifies genetic interactions, networks, and function. A genome-scale genetic interaction map was constructed by examining 5.4 million gene-gene pairs for synthetic genetic interactions, generating quantitative genetic interaction profiles for ~75% of all genes in the budding yeast, Saccharomyces cerevisiae. A network based on genetic interaction profiles reveals a functional map of the cell in which genes of similar biological processes cluster together in coherent subsets, and highly correlated profiles delineate specific pathways to define gene function. The global network identifies functional cross-connections between all bioprocesses, mapping a cellular wiring diagram of pleiotropy. Genetic interaction degree correlated with a number of different gene attributes, which may be informative about genetic network hubs in other organisms. We also demonstrate that extensive and unbiased mapping of the genetic landscape provides a key for interpretation of chemical-genetic interactions and drug target identification.


Science | 2008

The Chemical Genomic Portrait of Yeast: Uncovering a Phenotype for All Genes

Maureen E. Hillenmeyer; Eula Fung; Jan Wildenhain; Sarah E. Pierce; Shawn Hoon; William W. Lee; Mark R. Proctor; Robert P. St.Onge; Mike Tyers; Daphne Koller; Russ B. Altman; Ronald W. Davis; Corey Nislow; Guri Giaever

Genetics aims to understand the relation between genotype and phenotype. However, because complete deletion of most yeast genes (∼80%) has no obvious phenotypic consequence in rich medium, it is difficult to study their functions. To uncover phenotypes for this nonessential fraction of the genome, we performed 1144 chemical genomic assays on the yeast whole-genome heterozygous and homozygous deletion collections and quantified the growth fitness of each deletion strain in the presence of chemical or environmental stress conditions. We found that 97% of gene deletions exhibited a measurable growth phenotype, suggesting that nearly all genes are essential for optimal growth in at least one condition.


Nature Genetics | 2007

A high-resolution atlas of nucleosome occupancy in yeast

William W. Lee; Desiree Tillo; Nicolas Bray; Randall H. Morse; Ronald W. Davis; Timothy R. Hughes; Corey Nislow

We present the first complete high-resolution map of nucleosome occupancy across the whole Saccharomyces cerevisiae genome, identifying over 70,000 positioned nucleosomes occupying 81% of the genome. On a genome-wide scale, the persistent nucleosome-depleted region identified previously in a subset of genes demarcates the transcription start site. Both nucleosome occupancy signatures and overall occupancy correlate with transcript abundance and transcription rate. In addition, functionally related genes can be clustered on the basis of the nucleosome occupancy patterns observed at their promoters. A quantitative model of nucleosome occupancy indicates that DNA structural features may account for much of the global nucleosome occupancy.


Molecular Cell | 2008

A Library of Yeast Transcription Factor Motifs Reveals a Widespread Function for Rsc3 in Targeting Nucleosome Exclusion at Promoters

Gwenael Badis; Esther T. Chan; Harm van Bakel; Lourdes Peña-Castillo; Desiree Tillo; Kyle Tsui; Clayton D. Carlson; Andrea J. Gossett; Michael J. Hasinoff; Christopher L. Warren; Marinella Gebbia; Shaheynoor Talukder; Ally Yang; Sanie Mnaimneh; Dimitri Terterov; David Coburn; Ai Li Yeo; Zhen Xuan Yeo; Neil D. Clarke; Jason D. Lieb; Aseem Z. Ansari; Corey Nislow; Timothy R. Hughes

The sequence specificity of DNA-binding proteins is the primary mechanism by which the cell recognizes genomic features. Here, we describe systematic determination of yeast transcription factor DNA-binding specificities. We obtained binding specificities for 112 DNA-binding proteins representing 19 distinct structural classes. One-third of the binding specificities have not been previously reported. Several binding sequences have striking genomic distributions relative to transcription start sites, supporting their biological relevance and suggesting a role in promoter architecture. Among these are Rsc3 binding sequences, containing the core CGCG, which are found preferentially approximately 100 bp upstream of transcription start sites. Mutation of RSC3 results in a dramatic increase in nucleosome occupancy in hundreds of proximal promoters containing a Rsc3 binding element, but has little impact on promoters lacking Rsc3 binding sequences, indicating that Rsc3 plays a broad role in targeting nucleosome exclusion at yeast promoters.


PLOS Biology | 2010

Most "dark matter" transcripts are associated with known genes.

Harm van Bakel; Corey Nislow; Benjamin J. Blencowe; Timothy R. Hughes

Short-read RNA sequencing in mouse and human tissues shows that most transcripts are encoded within or nearby known genes and that most of the genome is not transcribed.


The EMBO Journal | 1997

Mammalian homologues of the Polycomb ‐group gene Enhancer of zeste mediate gene silencing in Drosophila heterochromatin and at S.cerevisiae telomeres

Götz Laible; Andrea Wolf; Rainer Dorn; Gunter Reuter; Corey Nislow; Angelika Lebersorger; Dan Popkin; Lorraine Pillus; Thomas Jenuwein

Gene silencing is required to stably maintain distinct patterns of gene expression during eukaryotic development and has been correlated with the induction of chromatin domains that restrict gene activity. We describe the isolation of human (EZH2) and mouse (Ezh1) homologues of the Drosophila Polycomb‐group (Pc‐G) gene Enhancer of zeste [E(z)], a crucial regulator of homeotic gene expression implicated in the assembly of repressive protein complexes in chromatin. Mammalian homologues of E(z) are encoded by two distinct loci in mouse and man, and the two murine Ezh genes display complementary expression profiles during mouse development. The E(z) gene family reveals a striking functional conservation in mediating gene repression in eukaryotic chromatin: extra gene copies of human EZH2 or Drosophila E(z) in transgenic flies enhance position effect variegation of the heterochromatin‐associated white gene, and expression of either human EZH2 or murine Ezh1 restores gene repression in Saccharomyces cerevisiae mutants that are impaired in telomeric silencing. Together, these data provide a functional link between Pc‐G‐dependent gene repression and inactive chromatin domains, and indicate that silencing mechanism(s) may be broadly conserved in eukaryotes.


Science | 2010

Genotype to Phenotype: A Complex Problem

Robin D. Dowell; Owen Ryan; An Jansen; Doris Cheung; Sudeep D. Agarwala; Timothy Danford; Douglas A. Bernstein; P. Alexander Rolfe; Lawrence E. Heisler; Brian L. Chin; Corey Nislow; Guri Giaever; Patrick C. Phillips; Gerald R. Fink; David K. Gifford; Charles Boone

In yeast, the impact of gene knockouts depends on genetic background. We generated a high-resolution whole-genome sequence and individually deleted 5100 genes in Σ1278b, a Saccharomyces cerevisiae strain closely related to reference strain S288c. Similar to the variation between human individuals, Σ1278b and S288c average 3.2 single-nucleotide polymorphisms per kilobase. A genome-wide comparison of deletion mutant phenotypes identified a subset of genes that were conditionally essential by strain, including 44 essential genes unique to Σ1278b and 13 unique to S288c. Genetic analysis indicates the conditional phenotype was most often governed by complex genetic interactions, depending on multiple background-specific modifiers. Our comprehensive analysis suggests that the presence of a complex set of modifiers will often underlie the phenotypic differences between individuals.


Nature Genetics | 2007

Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions

Robert P. St.Onge; Ramamurthy Mani; Julia Oh; Mark R. Proctor; Eula Fung; Ronald W. Davis; Corey Nislow; Frederick P. Roth; Guri Giaever

Systematic genetic interaction studies have illuminated many cellular processes. Here we quantitatively examine genetic interactions among 26 Saccharomyces cerevisiae genes conferring resistance to the DNA-damaging agent methyl methanesulfonate (MMS), as determined by chemogenomic fitness profiling of pooled deletion strains. We constructed 650 double-deletion strains, corresponding to all pairings of these 26 deletions. The fitness of single- and double-deletion strains were measured in the presence and absence of MMS. Genetic interactions were defined by combining principles from both statistical and classical genetics. The resulting network predicts that the Mph1 helicase has a role in resolving homologous recombination–derived DNA intermediates that is similar to (but distinct from) that of the Sgs1 helicase. Our results emphasize the utility of small molecules and multifactorial deletion mutants in uncovering functional relationships and pathway order.


Nature Cell Biology | 2012

Dissecting DNA damage response pathways by analysing protein localization and abundance changes during DNA replication stress

Johnny M. Tkach; Askar Yimit; Anna Y. Lee; Michael Riffle; Michael Costanzo; Daniel Jaschob; Jason A. Hendry; Jiongwen Ou; Jason Moffat; Charles Boone; Trisha N. Davis; Corey Nislow; Grant W. Brown

Relocalization of proteins is a hallmark of the DNA damage response. We use high-throughput microscopic screening of the yeast GFP fusion collection to develop a systems-level view of protein reorganization following drug-induced DNA replication stress. Changes in protein localization and abundance reveal drug-specific patterns of functional enrichments. Classification of proteins by subcellular destination enables the identification of pathways that respond to replication stress. We analysed pairwise combinations of GFP fusions and gene deletion mutants to define and order two previously unknown DNA damage responses. In the first, Cmr1 forms subnuclear foci that are regulated by the histone deacetylase Hos2 and are distinct from the typical Rad52 repair foci. In a second example, we find that the checkpoint kinases Mec1/Tel1 and the translation regulator Asc1 regulate P-body formation. This method identifies response pathways that were not detected in genetic and protein interaction screens, and can be readily applied to any form of chemical or genetic stress to reveal cellular response pathways.


Nature Biotechnology | 2011

Systematic exploration of essential yeast gene function with temperature-sensitive mutants

Zhijian Li; Franco J. Vizeacoumar; Sondra Bahr; Jingjing Li; Jonas Warringer; Frederick Vizeacoumar; Renqiang Min; Benjamin VanderSluis; Jeremy Bellay; Michael Devit; James A. Fleming; Andrew D. Stephens; Julian Haase; Zhen Yuan Lin; Anastasia Baryshnikova; Hong Lu; Zhun Yan; Ke Jin; Sarah L. Barker; Alessandro Datti; Guri Giaever; Corey Nislow; Chris Bulawa; Chad L. Myers; Michael Costanzo; Anne-Claude Gingras; Zhaolei Zhang; Anders Blomberg; Kerry Bloom; Brenda Andrews

Conditional temperature-sensitive (ts) mutations are valuable reagents for studying essential genes in the yeast Saccharomyces cerevisiae. We constructed 787 ts strains, covering 497 (∼45%) of the 1,101 essential yeast genes, with ∼30% of the genes represented by multiple alleles. All of the alleles are integrated into their native genomic locus in the S288C common reference strain and are linked to a kanMX selectable marker, allowing further genetic manipulation by synthetic genetic array (SGA)–based, high-throughput methods. We show two such manipulations: barcoding of 440 strains, which enables chemical-genetic suppression analysis, and the construction of arrays of strains carrying different fluorescent markers of subcellular structure, which enables quantitative analysis of phenotypes using high-content screening. Quantitative analysis of a GFP-tubulin marker identified roles for cohesin and condensin genes in spindle disassembly. This mutant collection should facilitate a wide range of systematic studies aimed at understanding the functions of essential genes.

Collaboration


Dive into the Corey Nislow's collaboration.

Top Co-Authors

Avatar

Guri Giaever

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sunita Sinha

University of British Columbia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kyle Tsui

University of Toronto

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge