Corinne Jud
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Corinne Jud.
Proceedings of the National Academy of Sciences of the United States of America | 2007
Gionata Cavadini; Saskia Petrzilka; Philipp Kohler; Corinne Jud; Irene Tobler; Thomas Birchler; Adriano Fontana
Production of TNF-α and IL-1 in infectious and autoimmune diseases is associated with fever, fatigue, and sleep disturbances, which are collectively referred to as sickness behavior syndrome. In mice TNF-α and IL-1 increase nonrapid eye movement sleep. Because clock genes regulate the circadian rhythm and thereby locomotor activity and may alter sleep architecture we assessed the influence of TNF-α on the circadian timing system. TNF-α is shown here to suppress the expression of the PAR bZip clock-controlled genes Dbp, Tef, and Hlf and of the period genes Per1, Per2, and Per3 in fibroblasts in vitro and in vivo in the liver of mice infused with the cytokine. The effect of TNF-α on clock genes is shared by IL-1β, but not by IFN-α, and IL-6. Furthermore, TNF-α interferes with the expression of Dbp in the suprachiasmatic nucleus and causes prolonged rest periods in the dark when mice show spontaneous locomotor activity. Using clock reporter genes TNF-α is found here to inhibit CLOCK-BMAL1-induced activation of E-box regulatory elements-dependent clock gene promoters. We suggest that the increase of TNF-α and IL-1β, as seen in infectious and autoimmune diseases, impairs clock gene functions and causes fatigue.
Circulation | 2007
Hema Viswambharan; João Miguel Carvas; Vladan Antic; Ana Marecic; Corinne Jud; Christian E. Zaugg; Xiu-Fen Ming; Jean-Pierre Montani; Urs Albrecht; Zhihong Yang
Background— The circadian clock regulates biological processes including cardiovascular function and metabolism. In the present study, we investigated the role of the circadian clock gene Period2 (Per2) in endothelial function in a mouse model. Methods and Results— Compared with the wild-type littermates, mice with Per2 mutation exhibited impaired endothelium-dependent relaxations to acetylcholine in aortic rings suspended in organ chambers. During transition from the inactive to active phase, this response was further increased in the wild-type mice but further decreased in the Per2 mutants. The endothelial dysfunction in the Per2 mutants was also observed with ionomycin, which was improved by the cyclooxygenase inhibitor indomethacin. No changes in the expression of endothelial acetylcholine-M3 receptor or endothelial nitric oxide synthase protein but increased cyclooxygenase-1 (not cyclooxygenase-2) protein levels were observed in the aortas of the Per2 mutants. Compared with Per2 mutants, a greater endothelium-dependent relaxation to ATP was observed in the wild-type mice, which was reduced by indomethacin. In quiescent aortic rings, ATP caused greater endothelium-dependent contractions in the Per2 mutants than in the wild-type mice, contractions that were abolished by indomethacin. The endothelial dysfunction in the Per2 mutant mice is not associated with hypertension or dyslipidemia. Conclusions— Mutation in the Per2 gene in mice is associated with aortic endothelial dysfunction involving decreased production of NO and vasodilatory prostaglandin(s) and increased release of cyclooxygenase-1–derived vasoconstrictor(s). The results suggest an important role of the Per2 gene in maintenance of normal cardiovascular functions.
Biological Procedures Online | 2005
Corinne Jud; Isabelle Schmutz; Gabriele Hampp; Henrik Oster; Urs Albrecht
Most behavioral experiments within circadian research are based on the analysis of locomotor activity. This paper introduces scientists to chronobiology by explaining the basic terminology used within the field. Furthermore, it aims to assist in designing, carrying out, and evaluating wheel-running experiments with rodents, particularly mice. Since light is an easily applicable stimulus that provokes strong effects on clock phase, the paper focuses on the application of different lighting conditions.
European Journal of Neuroscience | 2006
Christian Cajochen; Corinne Jud; Mirjam Münch; Szymon Kobialka; Anna Wirz-Justice; Urs Albrecht
We developed a non‐invasive method to measure and quantify human circadian PER2 gene expression in oral mucosa samples and show that this gene oscillates in a circadian (= about a day) fashion. We also have the first evidence that induction of human PER2 expression is stimulated by exposing subjects to 2 h of light in the evening. This increase in PER2 expression was statistically significant in comparison to a non‐light control condition only after light at 460 nm (blue) but not after light exposure at 550 nm (green). Our results indicate that the non‐image‐forming visual system is involved in human circadian gene expression. The demonstration of a functional circadian machinery in human buccal samples and its response to light opens the door for investigation of human circadian rhythms at the gene level and their associated disorders.
Scientific Reports | 2015
Lenke Horváth; Yuki Umehara; Corinne Jud; Fabian Blank; Alke Petri-Fink; Barbara Rothen-Rutishauser
Intensive efforts in recent years to develop and commercialize in vitro alternatives in the field of risk assessment have yielded new promising two- and three dimensional (3D) cell culture models. Nevertheless, a realistic 3D in vitro alveolar model is not available yet. Here we report on the biofabrication of the human air-blood tissue barrier analogue composed of an endothelial cell, basement membrane and epithelial cell layer by using a bioprinting technology. In contrary to the manual method, we demonstrate that this technique enables automatized and reproducible creation of thinner and more homogeneous cell layers, which is required for an optimal air-blood tissue barrier. This bioprinting platform will offer an excellent tool to engineer an advanced 3D lung model for high-throughput screening for safety assessment and drug efficacy testing.
American Journal of Human Genetics | 2008
Jing Zhang; Zhe Fang; Corinne Jud; Mariska J. Vansteensel; Krista Kaasik; Cheng Chi Lee; Urs Albrecht; Filippo Tamanini; Johanna H. Meijer; Ben A. Oostra; David L. Nelson
Fragile X syndrome results from the absence of the fragile X mental retardation 1 (FMR1) gene product (FMRP). FMR1 has two paralogs in vertebrates: fragile X related gene 1 and 2 (FXR1 and FXR2). Here we show that Fmr1/Fxr2 double knockout (KO) and Fmr1 KO/Fxr2 heterozygous animals exhibit a loss of rhythmic activity in a light:dark (LD) cycle, and that Fmr1 or Fxr2 KO mice display a shorter free-running period of locomotor activity in total darkness (DD). Molecular analysis and in vitro electrophysiological studies suggest essentially normal function of cells in the suprachiasmatic nucleus (SCN) in Fmr1/Fxr2 double KO mice. However, the cyclical patterns of abundance of several core clock component messenger (m) RNAs are altered in the livers of double KO mice. Furthermore, FXR2P alone or FMRP and FXR2P together can increase PER1- or PER2-mediated BMAL1-Neuronal PAS2 (NPAS2) transcriptional activity in a dose-dependent manner. These data collectively demonstrate that FMR1 and FXR2 are required for the presence of rhythmic circadian behavior in mammals and suggest that this role may be relevant to sleep and other behavioral alterations observed in fragile X patients.
ACS Nano | 2014
Cécile Bonnaud; Christophe A. Monnier; Davide Demurtas; Corinne Jud; Dimitri Vanhecke; Xavier Montet; Ruud Hovius; Marco Lattuada; Barbara Rothen-Rutishauser; Alke Petri-Fink
A major contemporary concern in developing effective liposome-nanoparticle hybrids is the present inclusion size limitation of nanoparticles between vesicle bilayers, which is considered to be around 6.5 nm in diameter. In this article, we present experimental observations backed by theoretical considerations which show that greater structures can be incorporated within vesicle membranes by promoting the clustering of nanoparticles before liposome formation. Cryo-transmission electron microscopy and cryo-electron tomography confirm these observations at unprecedented detail and underpin that the liposome membranes can accommodate flexible structures of up to 60 nm in size. These results imply that this material is more versatile in terms of inclusion capabilities and consequently widens the opportunities in developing multivalent vesicles for nanobiotechnology applications.
FEBS Letters | 2011
Jürgen A. Ripperger; Corinne Jud; Urs Albrecht
The house mouse Mus musculus represents a valuable tool for the analysis and the understanding of the mammalian circadian oscillator. Forward and reverse genetics allowed the identification of clock components and the verification of their function within the circadian clockwork. In many cases unforeseen links were discovered between a particular circadian regulatory protein and various diseases or syndromes. Thus, this model system is not only perfectly suited to pinpoint the components of the mammalian circadian clock, but also to unravel metabolic, physiological, and pathological processes linked to the circadian timing system.
Molecular metabolism | 2013
Sylvie Chappuis; Jürgen A. Ripperger; Anna Schnell; Gianpaolo Rando; Corinne Jud; Walter Wahli; Urs Albrecht
Adaptive thermogenesis allows mammals to resist to cold. For instance, in brown adipose tissue (BAT) the facultative uncoupling of the proton gradient from ATP synthesis in mitochondria is used to generate systemic heat. However, this system necessitates an increase of the Uncoupling protein 1 (Ucp1) and its activation by free fatty acids. Here we show that mice without functional Period2 (Per2) were cold sensitive because their adaptive thermogenesis system was less efficient. Upon cold-exposure, Heat shock factor 1 (HSF1) induced Per2 in the BAT. Subsequently, PER2 as a co-activator of PPARα increased expression of Ucp1. PER2 also increased Fatty acid binding protein 3 (Fabp3), a protein important to transport free fatty acids from the plasma to mitochondria to activate UCP1. Hence, in BAT PER2 is important for the coordination of the molecular response of mice exposed to cold by synchronizing UCP1 expression and its activation.
Journal of Biological Rhythms | 2006
Corinne Jud; Urs Albrecht
A genetic approach was used to investigate whether the emergence of circadian rhythms in murine pups is dependent on a functional maternal clock. Arrhythmic females bearing either the mPer1Brdm1/Per2Brdm1 or mPer2Brdm1/Cry1-/- double-mutant genotype were crossed with wild-type males under constant darkness. The heterozygous offspring have the genetic constitution for a functional circadian clock. Individual pups born to arrhythmic mPer1Brdm1/Per2Brdm1 and mPer2Brdm1/Cry1-/- mothers in constant darkness without external zeitgeber developed normal circadian rhythms, but their clocks were less synchronized to each other compared to wild-type animals. These findings indicate that development of circadian rhythms does not depend on a functional circadian clock in maternal tissue, extending previous findings obtained from pups born to SCN-lesioned mothers.