Urs Albrecht
University of Fribourg
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Urs Albrecht.
Cell | 2002
Nicolas Preitner; Francesca Damiola; Luis-Lopez-Molina; J. Zakany; Denis Duboule; Urs Albrecht; Ueli Schibler
Mammalian circadian rhythms are generated by a feedback loop in which BMAL1 and CLOCK, players of the positive limb, activate transcription of the cryptochrome and period genes, components of the negative limb. Bmal1 and Per transcription cycles display nearly opposite phases and are thus governed by different mechanisms. Here, we identify the orphan nuclear receptor REV-ERBalpha as the major regulator of cyclic Bmal1 transcription. Circadian Rev-erbalpha expression is controlled by components of the general feedback loop. Thus, REV-ERBalpha constitutes a molecular link through which components of the negative limb drive antiphasic expression of components of the positive limb. While REV-ERBalpha influences the period length and affects the phase-shifting properties of the clock, it is not required for circadian rhythm generation.
Annual Review of Physiology | 2010
Charna Dibner; Ulrich Schibler; Urs Albrecht
Most physiology and behavior of mammalian organisms follow daily oscillations. These rhythmic processes are governed by environmental cues (e.g., fluctuations in light intensity and temperature), an internal circadian timing system, and the interaction between this timekeeping system and environmental signals. In mammals, the circadian timekeeping system has a complex architecture, composed of a central pacemaker in the brains suprachiasmatic nuclei (SCN) and subsidiary clocks in nearly every body cell. The central clock is synchronized to geophysical time mainly via photic cues perceived by the retina and transmitted by electrical signals to SCN neurons. In turn, the SCN influences circadian physiology and behavior via neuronal and humoral cues and via the synchronization of local oscillators that are operative in the cells of most organs and tissues. Thus, some of the SCN output pathways serve as input pathways for peripheral tissues. Here we discuss knowledge acquired during the past few years on the complex structure and function of the mammalian circadian timing system.
Cell | 1997
Urs Albrecht; Zhong Sheng Sun; Gregor Eichele; Cheng Chi Lee
A mouse gene, mper1, having all the properties expected of a circadian clock gene, was reported recently. This gene is expressed in a circadian pattern in the suprachiasmatic nucleus (SCN). mper1 maintains this pattern of circadian expression in constant darkness and can be entrained to a new light/dark cycle. Here we report the isolation of a second mammalian gene, mper2, which also has these properties and greater homology to Drosophila period. Expression of mper1 and mper2 is overlapping but asynchronous by 4 hr. mper1, unlike period and mper2, is expressed rapidly after exposure to light at CT22. It appears that mper1 is the pacemaker component which responds to light and thus mediates photic entrainment.
Nature Genetics | 1999
Pentao Liu; Maki Wakamiya; Martin Shea; Urs Albrecht; Richard R. Behringer; Allan Bradley
Several studies have implicated Wnt signalling in primary axis formation during vertebrate embryogenesis, yet no Wnt protein has been shown to be essential for this process. In the mouse, primitive streak formation is the first overt morphological sign of the anterior-posterior axis. Here we show that Wnt3 is expressed before gastrulation in the proximal epiblast of the egg cylinder, then is restricted to the posterior proximal epiblast and its associated visceral endoderm and subsequently to the primitive streak and mesoderm. Wnt3–/– mice develop a normal egg cylinder but do not form a primitive streak, mesoderm or node. The epiblast continues to proliferate in an undifferentiated state that lacks anterior-posterior neural patterning, but anterior visceral endoderm markers are expressed and correctly positioned. Our results suggest that regional patterning of the visceral endoderm is independent of primitive streak formation, but the subsequent establishment of anterior-posterior neural pattern in the ectoderm is dependent on derivatives of the primitive streak. These studies provide genetic proof for the requirement of Wnt3 in primary axis formation in the mouse.
Cell | 2001
Binhai Zheng; Urs Albrecht; Krista Kaasik; Marijke Sage; Weiqin Lu; Sukeshi Vaishnav; Qiu Li; Zhong Sheng Sun; Gregor Eichele; Allan Bradley; Cheng Chi Lee
Mice carrying a null mutation in the Period 1 (mPer1) gene were generated using embryonic stem cell technology. Homozygous mPer1 mutants display a shorter circadian period with reduced precision and stability. Mice deficient in both mPer1 and mPer2 do not express circadian rhythms. While mPER2 regulates clock gene expression at the transcriptional level, mPER1 is dispensable for the rhythmic RNA expression of mPer1 and mPer2 and may instead regulate mPER2 at a posttranscriptional level. Studies of clock-controlled genes (CCGs) reveal a complex pattern of regulation by mPER1 and mPER2, suggesting independent controls by the two proteins over some output pathways. Genes encoding key enzymes in heme biosynthesis are under circadian control and are regulated by mPER1 and mPER2. Together, our studies show that mPER1 and mPER2 have distinct and complementary roles in the mouse clock mechanism.
Cell | 1999
Rainer B. Lanz; Neil J. McKenna; Sergio A. Onate; Urs Albrecht; Jiemin Wong; Sophia Y. Tsai; Ming-Jer Tsai; Bert W. O’Malley
Nuclear receptors play critical roles in the regulation of eukaryotic gene expression. We report the isolation and functional characterization of a novel transcriptional coactivator, termed steroid receptor RNA activator (SRA). SRA is selective for steroid hormone receptors and mediates transactivation via their amino-terminal activation function. We provide functional and mechanistic evidence that SRA acts as an RNA transcript; transfected SRA, unlike other steroid receptor coregulators, functions in the presence of cycloheximide, and SRA mutants containing multiple translational stop signals retain their ability to activate steroid receptor-dependent gene expression. Biochemical fractionation shows that SRA exists in distinct ribonucleoprotein complexes, one of which contains the nuclear receptor coactivator steroid receptor coactivator 1. We suggest that SRA may act to confer functional specificity upon multiprotein complexes recruited by liganded receptors during transcriptional activation.
Neuron | 1998
Yong-hui Jiang; Dawna L. Armstrong; Urs Albrecht; C. M. Atkins; Jeffrey L. Noebels; Gregor Eichele; J. D. Sweatt; Arthur L. Beaudet
The E6-AP ubiquitin ligase (human/mouse gene UBE3A/Ube3a) promotes the degradation of p53 in association with papilloma E6 protein, and maternal deficiency causes human Angelman syndrome (AS). Ube3a is imprinted with silencing of the paternal allele in hippocampus and cerebellum in mice. We found that the phenotype of mice with maternal deficiency (m-/p+) for Ube3a resembles human AS with motor dysfunction, inducible seizures, and a context-dependent learning deficit. Long-term potentiation (LTP) was severely impaired in m-/p+ mice despite normal baseline synaptic transmission and neuroanatomy, indicating that ubiquitination may play a role in mammalian LTP and that LTP may be abnormal in AS. The cytoplasmic abundance of p53 was increased in postmitotic neurons in m-/p+ mice and in AS, providing a potential biochemical basis for the phenotype through failure to ubiquitinate and degrade various effectors.
Cell | 1997
Zhong Sheng Sun; Urs Albrecht; Olga Zhuchenko; Jennifer Bailey; Gregor Eichele; Cheng Chi Lee
The molecular components of mammalian circadian clocks are elusive. We have isolated a human gene termed RIGUI that encodes a bHLH/PAS protein 44% homologous to Drosophila period. The highly conserved mouse homolog (m-rigui) is expressed in a circadian pattern in the suprachiasmatic nucleus (SCN), the master regulator of circadian clocks in mammals. Circadian expression in the SCN continues in constant darkness, and a shift in the light/dark cycle evokes a proportional shift of m-rigui expression in the SCN. m-rigui transcripts also appear in a periodic pattern in Purkinje neurons, pars tuberalis, and retina, but with a timing of oscillation different from that seen in the SCN. Sequence homology and circadian patterns of expression suggest that RIGUI is a mammalian ortholog of the Drosophila period gene, raising the possibility that a regulator of circadian clocks is conserved.
Nature | 1999
Binhai Zheng; David W. Larkin; Urs Albrecht; Zhong Sheng Sun; Marijke Sage; Gregor Eichele; Cheng Chi Lee; Allan Bradley
Circadian rhythms are driven by endogenous biological clocks that regulate many biochemical, physiological and behavioural processes in a wide range of life forms. In mammals, there is a master circadian clock in the suprachiasmatic nucleus of the anterior hypothalamus. Three putative mammalian homologues (mPer1, mPer2 and mPer3) of the Drosophila circadian clock gene period (per) have been identified,,,,,,. The mPer genes share a conserved PAS domain (a dimerization domain found in Per, Arnt and Sim) and show a circadian expression pattern in the suprachiasmatic nucleus. To assess the in vivo function of mPer2, we generated and characterized a deletion mutation in the PAS domain of the mouse mPer2 gene. Here we show that mice homozygous for this mutation display a shorter circadian period followed by a loss of circadian rhythmicity in constant darkness. The mutation also diminishes the oscillating expression of both mPer1 and mPer2 in the suprachiasmatic nucleus, indicating that mPer2 may regulate mPer1 in vivo. These data provide evidence that an mPer gene functions in the circadian clock, and define mPer2 as a component of the mammalian circadian oscillator.
Nature Medicine | 2005
Rainer Spanagel; Gurudutt Pendyala; Carolina Abarca; Tarek Zghoul; Carles Sanchis-Segura; Maria Chiara Magnone; Jesús Lascorz; Martin Depner; David Holzberg; Michael Soyka; Stefan Schreiber; Fumihiko Matsuda; Mark Lathrop; Gunter Schumann; Urs Albrecht
Period (Per) genes are involved in regulation of the circadian clock and are thought to modulate several brain functions. We demonstrate that Per2Brdm1 mutant mice, which have a deletion in the PAS domain of the Per2 protein, show alterations in the glutamatergic system. Lowered expression of the glutamate transporter Eaat1 is observed in these animals, leading to reduced uptake of glutamate by astrocytes. As a consequence, glutamate levels increase in the extracellular space of Per2Brdm1 mutant mouse brains. This is accompanied by increased alcohol intake in these animals. In humans, variations of the PER2 gene are associated with regulation of alcohol consumption. Acamprosate, a drug used to prevent craving and relapse in alcoholic patients is thought to act by dampening a hyper-glutamatergic state. This drug reduced augmented glutamate levels and normalized increased alcohol consumption in Per2Brdm1 mutant mice. Collectively, these data establish glutamate as a link between dysfunction of the circadian clock gene Per2 and enhanced alcohol intake.