Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corinne Renier is active.

Publication


Featured researches published by Corinne Renier.


Genome Biology | 2003

Comparison of the canine and human olfactory receptor gene repertoires.

Pascale Quignon; Ewen F. Kirkness; Edouard Cadieu; Nizar Touleimat; Richard Guyon; Corinne Renier; Christophe Hitte; Catherine André; Claire M. Fraser; Francis Galibert

BackgroundOlfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a much keener olfactory potential than humans, only 21 canine OR genes have been described to date.ResultsIn this study, 817 novel canine OR sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Phylogenetic analysis of 403 canine OR sequences identified 51 families, and radiation-hybrid mapping of 562 showed that they are distributed on 24 dog chromosomes, in 37 distinct regions. Most of these regions constitute clusters of 2 to 124 closely linked genes. The two largest clusters (124 and 109 OR genes) are located on canine chromosomes 18 and 21. They are orthologous to human clusters located on human chromosomes 11q11-q13 and HSA11p15, containing 174 and 115 ORs respectively.ConclusionsThis study shows a strongly conserved genomic distribution of OR genes between dog and human, suggesting that OR genes evolved from a common mammalian ancestral repertoire by successive duplications. In addition, the dog repertoire appears to have expanded relative to that of humans, leading to the emergence of specific canine OR genes.


Oncotarget | 2016

Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

James Che; Victor Yu; Manjima Dhar; Corinne Renier; Melissa Matsumoto; Kyra Heirich; Edward B. Garon; Jonathan W. Goldman; Jianyu Rao; George W. Sledge; Mark D. Pegram; Shruti Sheth; Stefanie S. Jeffrey; Rajan P. Kulkarni; Elodie Sollier; Dino Di Carlo

Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells.


Nature Communications | 2017

Profiling protein expression in circulating tumour cells using microfluidic western blotting.

Elly Sinkala; Elodie Sollier-Christen; Corinne Renier; Elisabet Rosàs-Canyelles; James Che; Kyra Heirich; Todd A. Duncombe; Julea Vlassakis; Kevin A. Yamauchi; Haiyan Huang; Stefanie S. Jeffrey; Amy E. Herr

Circulating tumour cells (CTCs) are rare tumour cells found in the circulatory system of certain cancer patients. The clinical and functional significance of CTCs is still under investigation. Protein profiling of CTCs would complement the recent advances in enumeration, transcriptomic and genomic characterization of these rare cells and help define their characteristics. Here we describe a microfluidic western blot for an eight-plex protein panel for individual CTCs derived from estrogen receptor-positive (ER+) breast cancer patients. The precision handling and analysis reveals a capacity to assay sparingly available patient-derived CTCs, a biophysical CTC phenotype more lysis-resistant than breast cancer cell lines, a capacity to report protein expression on a per CTC basis and two statistically distinct GAPDH subpopulations within the patient-derived CTCs. Targeted single-CTC proteomics with the capacity for archivable, multiplexed protein analysis offers a unique, complementary taxonomy for understanding CTC biology and ascertaining clinical impact.


Journal of Neuro-oncology | 2010

Breast cancer brain metastases express the sodium iodide symporter

Corinne Renier; Hannes Vogel; Onyinye Offor; Chen Yao; Irene Wapnir

Breast cancer brain metastases are on the rise and their treatment is hampered by the limited entry and efficacy of anticancer drugs in this sanctuary. The sodium iodide symporter, NIS, actively transports iodide across the plasma membrane and is exploited clinically to deliver radioactive iodide into cells. As in thyroid cancers, NIS is expressed in many breast cancers including primary and metastatic tumors. In this study NIS expression was analyzed for the first time in 28 cases of breast cancer brain metastases using a polyclonal anti-NIS antibody directed against the terminal C-peptide of human NIS gene and immunohistochemical methods. Twenty-five tumors (84%) in this retrospective series were estrogen/progesterone receptor-negative and 15 (53.6%) were HER2+. Overall 21 (75%) cases and 80% of HER2 positive metastases were NIS positive. While the predominant pattern of NIS immunoreactivity is intracellular, plasma membrane immunopositivity was detected at least focally in 23.8% of NIS-positive samples. Altogether, these findings indicate that NIS expression is prevalent in breast cancer brain metastases and could have a therapeutic role via the delivery of radioactive iodide and selective ablation of tumor cells.


Biomicrofluidics | 2015

High efficiency vortex trapping of circulating tumor cells

Manjima Dhar; Jessica Wong; Armin Karimi; James Che; Corinne Renier; Melissa Matsumoto; Melanie Triboulet; Edward B. Garon; Jonathan W. Goldman; Matthew B. Rettig; Stefanie S. Jeffrey; Rajan P. Kulkarni; Elodie Sollier; Dino Di Carlo

Circulating tumor cells (CTCs) are important biomarkers for monitoring tumor dynamics and efficacy of cancer therapy. Several technologies have been demonstrated to isolate CTCs with high efficiency but achieve a low purity from a large background of blood cells. We have previously shown the ability to enrich CTCs with high purity from large volumes of blood through selective capture in microvortices using the Vortex Chip. The device consists of a narrow channel followed by a series of expansion regions called reservoirs. Fast flow in the narrow entry channel gives rise to inertial forces, which direct larger cells into trapping vortices in the reservoirs where they remain circulating in orbits. By studying the entry and stability of particles following entry into reservoirs, we discover that channel cross sectional area plays an important role in controlling the size of trapped particles, not just the orbital trajectories. Using these design modifications, we demonstrate a new device that is able to capture a wider size range of CTCs from clinical samples, uncovering further heterogeneity. This simple biophysical method opens doors for a range of downstream interventions, including genetic analysis, cell culture, and ultimately personalized cancer therapy.


npj Precision Oncology | 2017

Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology

Corinne Renier; Edward Pao; James Che; Haiyan E. Liu; Clementine A. Lemaire; Melissa Matsumoto; Melanie Triboulet; Sandy Srivinas; Stefanie S. Jeffrey; Matthew Rettig; Rajan P. Kulkarni; Dino Di Carlo; Elodie Sollier-Christen

There has been increased interest in utilizing non-invasive “liquid biopsies” to identify biomarkers for cancer prognosis and monitoring, and to isolate genetic material that can predict response to targeted therapies. Circulating tumor cells (CTCs) have emerged as such a biomarker providing both genetic and phenotypic information about tumor evolution, potentially from both primary and metastatic sites. Currently, available CTC isolation approaches, including immunoaffinity and size-based filtration, have focused on high capture efficiency but with lower purity and often long and manual sample preparation, which limits the use of captured CTCs for downstream analyses. Here, we describe the use of the microfluidic Vortex Chip for size-based isolation of CTCs from 22 patients with advanced prostate cancer and, from an enumeration study on 18 of these patients, find that we can capture CTCs with high purity (from 1.74 to 37.59%) and efficiency (from 1.88 to 93.75 CTCs/7.5 mL) in less than 1 h. Interestingly, more atypical large circulating cells were identified in five age-matched healthy donors (46–77 years old; 1.25–2.50 CTCs/7.5 mL) than in five healthy donors <30 years old (21–27 years old; 0.00 CTC/7.5 mL). Using a threshold calculated from the five age-matched healthy donors (3.37 CTCs/mL), we identified CTCs in 80% of the prostate cancer patients. We also found that a fraction of the cells collected (11.5%) did not express epithelial prostate markers (cytokeratin and/or prostate-specific antigen) and that some instead expressed markers of epithelial–mesenchymal transition, i.e., vimentin and N-cadherin. We also show that the purity and DNA yield of isolated cells is amenable to targeted amplification and next-generation sequencing, without whole genome amplification, identifying unique mutations in 10 of 15 samples and 0 of 4 healthy samples.Prostate cancer: a “liquid biopsy” test for circulating tumor cellsA microfluidic device can rapidly and efficiently isolate circulating tumor cells from the blood of prostate cancer patients. Elodie Sollier-Christen of Vortex Biosciences, Rajan Kulkarni of David Geffen School of Medicine at UCLA, Dino Di Carlo of UCLA and colleagues tested the company’s microfluidic technology on blood samples taken from 21 men with advanced prostate cancer and 10 healthy controls. They showed that, within an hour, the Vortex Chip could isolate circulating tumor cells in 80% of the cancer patients and that many of these cells did not display the usual surface markers that other approaches require to capture prostate cancer cells. The purities and DNA yields of the isolated cells were high enough to enable targeted genome sequencing, which revealed mutations potentially involved in tumor formation. The Vortex technology could help diagnose prostate cancer and inform therapeutic decision-making for those with the disease.


Scientific Reports | 2016

Label-free enumeration, collection and downstream cytological and cytogenetic analysis of circulating tumor cells

Manjima Dhar; Edward Pao; Corinne Renier; Derek E. Go; James Che; Rosita Montoya; Rachel Conrad; Melissa Matsumoto; Kyra Heirich; Melanie Triboulet; Jianyu Rao; Stefanie S. Jeffrey; Edward B. Garon; Jonathan W. Goldman; Nagesh Rao; Rajan P. Kulkarni; Elodie Sollier-Christen; Dino Di Carlo

Circulating tumor cells (CTCs) have a great potential as indicators of metastatic disease that may help physicians improve cancer prognostication, treatment and patient outcomes. Heterogeneous marker expression as well as the complexity of current antibody-based isolation and analysis systems highlights the need for alternative methods. In this work, we use a microfluidic Vortex device that can selectively isolate potential tumor cells from blood independent of cell surface expression. This system was adapted to interface with three protein-marker-free analysis techniques: (i) an in-flow automated image processing system to enumerate cells released, (ii) cytological analysis using Papanicolaou (Pap) staining and (iii) fluorescence in situ hybridization (FISH) targeting the ALK rearrangement. In-flow counting enables a rapid assessment of the cancer-associated large circulating cells in a sample within minutes to determine whether standard downstream assays such as cytological and cytogenetic analyses that are more time consuming and costly are warranted. Using our platform integrated with these workflows, we analyzed 32 non-small cell lung cancer (NSCLC) and 22 breast cancer patient samples, yielding 60 to 100% of the cancer patients with a cell count over the healthy threshold, depending on the detection method used: respectively 77.8% for automated, 60–100% for cytology, and 80% for immunostaining based enumeration.


npj Genomic Medicine | 2017

Workflow optimization of whole genome amplification and targeted panel sequencing for CTC mutation detection

Haiyan E. Liu; Melanie Triboulet; Amin Zia; Meghah Vuppalapaty; Evelyn Kidess-Sigal; John A. Coller; Vanita Natu; Vida Shokoohi; James Che; Corinne Renier; Natalie H. Chan; Violet R. Hanft; Stefanie S. Jeffrey; Elodie Sollier-Christen

Genomic characterization of circulating tumor cells (CTCs) may prove useful as a surrogate for conventional tissue biopsies. This is particularly important as studies have shown different mutational profiles between CTCs and ctDNA in some tumor subtypes. However, isolating rare CTCs from whole blood has significant hurdles. Very limited DNA quantities often can’t meet NGS requirements without whole genome amplification (WGA). Moreover, white blood cells (WBC) germline contamination may confound CTC somatic mutation analyses. Thus, a good CTC enrichment platform with an efficient WGA and NGS workflow are needed. Here, Vortex label-free CTC enrichment platform was used to capture CTCs. DNA extraction was optimized, WGA evaluated and targeted NGS tested. We used metastatic colorectal cancer (CRC) as the clinical target, HCT116 as the corresponding cell line, GenomePlex® and REPLI-g as the WGA methods, GeneRead DNAseq Human CRC Panel as the 38 gene panel. The workflow was further validated on metastatic CRC patient samples, assaying both tumor and CTCs. WBCs from the same patients were included to eliminate germline contaminations. The described workflow performed well on samples with sufficient DNA, but showed bias for rare cells with limited DNA input. REPLI-g provided an unbiased amplification on fresh rare cells, enabling an accurate variant calling using the targeted NGS. Somatic variants were detected in patient CTCs and not found in age matched healthy donors. This demonstrates the feasibility of a simple workflow for clinically relevant monitoring of tumor genetics in real time and over the course of a patient’s therapy using CTCs.Liquid biopsy: Simple workflow allows DNA analysis of circulating tumor cellsA microfluidic device that isolates cancer cells circulating in a blood sample allows for real-time genetic monitoring. A team led by Elodie Sollier-Christen of Vortex Biosciences, a cancer diagnostics company in Menlo Park, California, USA, in collaboration with Professor Stefanie Jeffrey at Stanford University School of Medicine, developed a simple workflow for analyzing the genomes of rare circulating tumor cells (CTCs) found in the bloodstream after they’ve been collected through a proprietary microfluidic system. They optimized rare cell DNA extraction, compared different whole genome amplification methods, and then tested the workflow on blood samples from patients with metastatic colorectal cancer. The analysis also included white blood cells from the same patients to parse cancer-causing mutations from inherited ones. The method could aid in the translation of liquid biopsies for the clinical care of cancer patients.


SLAS TECHNOLOGY: Translating Life Sciences Innovation | 2018

Fast and Label-Free Isolation of Circulating Tumor Cells from Blood: From a Research Microfluidic Platform to an Automated Fluidic Instrument, VTX-1 Liquid Biopsy System:

Clementine A. Lemaire; Sean Z. Liu; Charles L. Wilkerson; Vishnu C. Ramani; Nasim Barzanian; Kuo-Wei Huang; James Che; Michael W. Chiu; Meghah Vuppalapaty; Adam M. Dimmick; Dino Di Carlo; Michael L. Kochersperger; Steve C. Crouse; Stefanie S. Jeffrey; Robert F. Englert; Stephan Hengstler; Corinne Renier; Elodie Sollier-Christen

Tumor tissue biopsies are invasive, costly, and collect a limited cell population not completely reflective of patient cancer cell diversity. Circulating tumor cells (CTCs) can be isolated from a simple blood draw and may be representative of the diverse biology from multiple tumor sites. The VTX-1 Liquid Biopsy System was designed to automate the isolation of clinically relevant CTC populations, making the CTCs available for easy analysis. We present here the transition from a cutting-edge microfluidic innovation in the lab to a commercial, automated system for isolating CTCs directly from whole blood. As the technology evolved into a commercial system, flexible polydimethylsiloxane microfluidic chips were replaced by rigid poly(methyl methacrylate) chips for a 2.2-fold increase in cell recovery. Automating the fluidic processing with the VTX-1 further improved cancer cell recovery by nearly 1.4-fold, with a 2.8-fold decrease in contaminating white blood cells and overall improved reproducibility. Two isolation protocols were optimized that favor either the cancer cell recovery (up to 71.6% recovery) or sample purity (≤100 white blood cells/mL). The VTX-1’s performance was further tested with three different spiked breast or lung cancer cell lines, with 69.0% to 79.5% cell recovery. Finally, several cancer research applications are presented using the commercial VTX-1 system.


Oncotarget | 2016

Regression of experimental NIS-expressing breast cancer brain metastases in response to radioiodide/gemcitabine dual therapy

Corinne Renier; John Do; Andrea Reyna-Neyra; Deshka S. Foster; Abhijit De; Hannes Vogel; Stefanie S. Jeffrey; Victor Tse; Nancy Carrasco; Irene Wapnir

Treating breast cancer brain metastases (BCBMs) is challenging. Na+/I− symporter (NIS) expression in BCBMs would permit their selective targeting with radioiodide (131I−). We show impressive enhancement of tumor response by combining131I− with gemcitabine (GEM), a cytotoxic radiosensitizer. Nude mice mammary fat-pad (MFP) tumors and BCBMs were generated with braintropic MDA-MB-231Br cells transduced with bicistronically-linked NIS and firefly luciferase cDNAs. Response was monitored in vivo via bioluminescent imaging and NIS tumor expression.131I−/GEM therapy inhibited MFP tumor growth more effectively than either agent alone. BCBMs were treated with: high or low-dose GEM (58 or 14.5 mg/Kg×4); 131I− (1mCi or 2×0.5 mCi 7 days apart); and 131I−/GEM therapy. By post-injection day (PID) 25, 82-86% of controls and 78-83% of 131I−-treated BCBM grew, whereas 17% low-dose and 36% high-dose GEM regressed. The latter tumors were smaller than the controls with comparable NIS expression (~20% of cells). High and low-dose 131I−/GEM combinations caused 89% and 57% tumor regression, respectively. High-dose GEM/131I− delayed tumor growth: tumors increased 5-fold in size by PID45 (controls by PID18). Although fewer than 25% of cells expressed NIS, GEM/131I− caused dramatic tumor regression in NIS-transduced BCBMs. This effect was synergistic, and supports the hypothesis that GEM radiosensitizes cells to 131I−.

Collaboration


Dive into the Corinne Renier's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

James Che

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dino Di Carlo

University of California

View shared research outputs
Top Co-Authors

Avatar

Elodie Sollier

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge