Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Elodie Sollier is active.

Publication


Featured researches published by Elodie Sollier.


Proceedings of the National Academy of Sciences of the United States of America | 2012

High-throughput single-microparticle imaging flow analyzer

Keisuke Goda; Ali Ayazi; Daniel R. Gossett; Jagannath Sadasivam; Cejo K. Lonappan; Elodie Sollier; Ali M. Fard; Soojung Claire Hur; Jost Adam; Coleman Murray; Chao Wang; Nora Brackbill; Dino Di Carlo; Bahram Jalali

Optical microscopy is one of the most widely used diagnostic methods in scientific, industrial, and biomedical applications. However, while useful for detailed examination of a small number (< 10,000) of microscopic entities, conventional optical microscopy is incapable of statistically relevant screening of large populations (> 100,000,000) with high precision due to its low throughput and limited digital memory size. We present an automated flow-through single-particle optical microscope that overcomes this limitation by performing sensitive blur-free image acquisition and nonstop real-time image-recording and classification of microparticles during high-speed flow. This is made possible by integrating ultrafast optical imaging technology, self-focusing microfluidic technology, optoelectronic communication technology, and information technology. To show the system’s utility, we demonstrate high-throughput image-based screening of budding yeast and rare breast cancer cells in blood with an unprecedented throughput of 100,000 particles/s and a record false positive rate of one in a million.


Lab on a Chip | 2013

Micro-scale blood plasma separation: from acoustophoresis to egg-beaters

Maïwenn Kersaudy-Kerhoas; Elodie Sollier

Plasma is a rich mine of various biomarkers including proteins, metabolites and circulating nucleic acids. The diagnostic and therapeutic potential of these analytes has been quite recently uncovered, and the number of plasma biomarkers will still be growing in the coming years. A significant part of the blood plasma preparation is still handled manually, off-chip, via centrifugation or filtration. These batch methods have variable waiting times, and are often performed under non-reproducible conditions that may impair the collection of analytes of interest, with variable degradation. The development of miniaturised modules capable of automated and reproducible blood plasma separation would aid in the translation of lab-on-a-chip devices to the clinical market. Here we propose a systematic review of major plasma analytes and target applications, alongside existing solutions for micro-scale blood plasma extraction, focusing on the approaches that have been biologically validated for specific applications.


Nature Communications | 2013

Engineering fluid flow using sequenced microstructures

Hamed Amini; Elodie Sollier; Mahdokht Masaeli; Yu Xie; Baskar Ganapathysubramanian; Howard A. Stone; Dino Di Carlo

Controlling the shape of fluid streams is important across scales: from industrial processing to control of biomolecular interactions. Previous approaches to control fluid streams have focused mainly on creating chaotic flows to enhance mixing. Here we develop an approach to apply order using sequences of fluid transformations rather than enhancing chaos. We investigate the inertial flow deformations around a library of single cylindrical pillars within a microfluidic channel and assemble these net fluid transformations to engineer fluid streams. As these transformations provide a deterministic mapping of fluid elements from upstream to downstream of a pillar, we can sequentially arrange pillars to apply the associated nested maps and, therefore, create complex fluid structures without additional numerical simulation. To show the range of capabilities, we present sequences that sculpt the cross-sectional shape of a stream into complex geometries, move and split a fluid stream, perform solution exchange and achieve particle separation. A general strategy to engineer fluid streams into a broad class of defined configurations in which the complexity of the nonlinear equations of fluid motion are abstracted from the user is a first step to programming streams of any desired shape, which would be useful for biological, chemical and materials automation.


Scientific Reports | 2012

Hybrid Dispersion Laser Scanner

Keisuke Goda; Ata Mahjoubfar; Chao Wang; Ali M. Fard; Jost Adam; Daniel R. Gossett; Ali Ayazi; Elodie Sollier; Omer Malik; Edith Chen; Yu-Tai Liu; Rupert Brown; N. Sarkhosh; Dino Di Carlo; Bahram Jalali

Laser scanning technology is one of the most integral parts of todays scientific research, manufacturing, defense, and biomedicine. In many applications, high-speed scanning capability is essential for scanning a large area in a short time and multi-dimensional sensing of moving objects and dynamical processes with fine temporal resolution. Unfortunately, conventional laser scanners are often too slow, resulting in limited precision and utility. Here we present a new type of laser scanner that offers ∼1,000 times higher scan rates than conventional state-of-the-art scanners. This method employs spatial dispersion of temporally stretched broadband optical pulses onto the target, enabling inertia-free laser scans at unprecedented scan rates of nearly 100 MHz at 800 nm. To show our scanners broad utility, we use it to demonstrate unique and previously difficult-to-achieve capabilities in imaging, surface vibrometry, and flow cytometry at a record 2D raster scan rate of more than 100 kHz with 27,000 resolvable points.


Biomedical Microdevices | 2010

Fast and continuous plasma extraction from whole human blood based on expanding cell-free layer devices

Elodie Sollier; Myriam Cubizolles; Yves Fouillet; Jean-Luc Achard

This paper presents promising microfluidic devices designed for continuous and passive extraction of plasma from whole human blood. These designs are based on red cells lateral migration and the resulting cell-free layer locally expanded by geometric singularities such as an enlargement of the channel or a cavity adjacent to the channel. After an explanation of flow patterns, different tests are described that confirm the advantages of both proposed singularities, providing a 1.5 and 2X increase in extraction yield compared to a reference device, for 1:20 diluted blood at 100 µL/min. Devices have also been successively optimized, with extraction yields up to 17.8%, and biologically validated for plasma extraction, with no protein loss or denaturation, no hemolysis and with excellent cell purity. Finally, the dilution effect has been experimentally investigated.


Oncotarget | 2016

Classification of large circulating tumor cells isolated with ultra-high throughput microfluidic Vortex technology

James Che; Victor Yu; Manjima Dhar; Corinne Renier; Melissa Matsumoto; Kyra Heirich; Edward B. Garon; Jonathan W. Goldman; Jianyu Rao; George W. Sledge; Mark D. Pegram; Shruti Sheth; Stefanie S. Jeffrey; Rajan P. Kulkarni; Elodie Sollier; Dino Di Carlo

Circulating tumor cells (CTCs) are emerging as rare but clinically significant non-invasive cellular biomarkers for cancer patient prognosis, treatment selection, and treatment monitoring. Current CTC isolation approaches, such as immunoaffinity, filtration, or size-based techniques, are often limited by throughput, purity, large output volumes, or inability to obtain viable cells for downstream analysis. For all technologies, traditional immunofluorescent staining alone has been employed to distinguish and confirm the presence of isolated CTCs among contaminating blood cells, although cells isolated by size may express vastly different phenotypes. Consequently, CTC definitions have been non-trivial, researcher-dependent, and evolving. Here we describe a complete set of objective criteria, leveraging well-established cytomorphological features of malignancy, by which we identify large CTCs. We apply the criteria to CTCs enriched from stage IV lung and breast cancer patient blood samples using the High Throughput Vortex Chip (Vortex HT), an improved microfluidic technology for the label-free, size-based enrichment and concentration of rare cells. We achieve improved capture efficiency (up to 83%), high speed of processing (8 mL/min of 10x diluted blood, or 800 μL/min of whole blood), and high purity (avg. background of 28.8±23.6 white blood cells per mL of whole blood). We show markedly improved performance of CTC capture (84% positive test rate) in comparison to previous Vortex designs and the current FDA-approved gold standard CellSearch assay. The results demonstrate the ability to quickly collect viable and pure populations of abnormal large circulating cells unbiased by molecular characteristics, which helps uncover further heterogeneity in these cells.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Intrinsic particle-induced lateral transport in microchannels

Hamed Amini; Elodie Sollier; Westbrook M. Weaver; Dino Di Carlo

In microfluidic systems at low Reynolds number, the flow field around a particle is assumed to maintain fore-aft symmetry, with fluid diverted by the presence of a particle, returning to its original streamline downstream. This current model considers particles as passive components of the system. However, we demonstrate that at finite Reynolds number, when inertia is taken into consideration, particles are not passive elements in the flow but significantly disturb and modify it. In response to the flow field, particles translate downstream while rotating. The combined effect of the flow of fluid around particles, particle rotation, channel confinement (i.e., particle dimensions approaching those of the channel), and finite fluid inertia creates a net recirculating flow perpendicular to the primary flow direction within straight channels that resembles the well-known Dean flow in curved channels. Significantly, the particle generating this flow remains laterally fixed as it translates downstream and only the fluid is laterally transferred. Therefore, as the particles remain inertially focused, operations can be performed around the particles in a way that is compatible with downstream assays such as flow cytometry. We apply this particle-induced transfer to perform fluid switching and mixing around rigid microparticles as well as deformable cells. This transport phenomenon, requiring only a simple channel geometry with no external forces to operate, offers a practical approach for fluid transfer at high flow rates with a wide range of applications, including sample preparation, flow reaction, and heat transfer.


Biomicrofluidics | 2015

High efficiency vortex trapping of circulating tumor cells

Manjima Dhar; Jessica Wong; Armin Karimi; James Che; Corinne Renier; Melissa Matsumoto; Melanie Triboulet; Edward B. Garon; Jonathan W. Goldman; Matthew B. Rettig; Stefanie S. Jeffrey; Rajan P. Kulkarni; Elodie Sollier; Dino Di Carlo

Circulating tumor cells (CTCs) are important biomarkers for monitoring tumor dynamics and efficacy of cancer therapy. Several technologies have been demonstrated to isolate CTCs with high efficiency but achieve a low purity from a large background of blood cells. We have previously shown the ability to enrich CTCs with high purity from large volumes of blood through selective capture in microvortices using the Vortex Chip. The device consists of a narrow channel followed by a series of expansion regions called reservoirs. Fast flow in the narrow entry channel gives rise to inertial forces, which direct larger cells into trapping vortices in the reservoirs where they remain circulating in orbits. By studying the entry and stability of particles following entry into reservoirs, we discover that channel cross sectional area plays an important role in controlling the size of trapped particles, not just the orbital trajectories. Using these design modifications, we demonstrate a new device that is able to capture a wider size range of CTCs from clinical samples, uncovering further heterogeneity. This simple biophysical method opens doors for a range of downstream interventions, including genetic analysis, cell culture, and ultimately personalized cancer therapy.


Proceedings of SPIE | 2013

3D ultrafast laser scanner

Ata Mahjoubfar; Keisuke Goda; Chao Wang; Ali M. Fard; Jost Adam; Daniel R. Gossett; Ali Ayazi; Elodie Sollier; Omer Malik; Edith Chen; Yu-Tai Liu; R. Brown; Niusha Sarkhosh; Dino Di Carlo; Bahram Jalali

Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.


Cancer Research | 2016

Abstract 4967: Label-free collection of prostate circulating tumor cells using microfluidic Vortex technology

Edward Pao; Corinne Renier; Clementine A. Lemaire; James Che; Melissa Matsumoto Di Carlo; Melanie Triboulet; Sandy Srivinas; Stefanie S. Jeffrey; Rajan P. Kulkarni; Matthew Rettig; Elodie Sollier; Dino Di Carlo

BACKGROUND Prostate cancer is among the most common cancers in men worldwide. Better markers than Prostate Specific Antigen (PSA) are still needed for the detection and monitoring of disease progression. Circulating Tumor Cells (CTCs) are shed into the blood stream from primary tumor(s) and may play key roles in the metastatic process. Liquid biopsies have emerged as a promising approach, with a correlation between the CTC numbers and patient prognosis for prostate cancer. CTCs have also been shown to enable early detection of recurrence, and could be potential candidates for guiding cancer therapy in real-time [1]. Current CTC enrichment technologies, including immuno-affinity and size-based filtration methods, have focused on high capture efficiency with sometimes tedious sample preparation and overall low purity. METHOD Here, we describe the use of the microfluidic Vortex Chip [2] for rapid and size-based isolation of CTCs from the blood of 23 patients with advanced prostate cancer, and 10 healthy donors; 5 being RESULTS Preliminary work with LNCaP prostate cancer cells spiked in blood showed a 29% capture efficiency and 50% purity. In vitro cell assays confirmed that cells enriched with Vortex chip were alive and proliferating for up to 7 days. For 23 patient samples, CTCs were captured (0.5 - 20 CTCs/mL) with high purity (3.6 - 72.3%), in less than 1H, without prior sample preparation. 11.5% of the cells collected were CK and PSA-negative, but some were identified as undergoing epithelial-mesenchymal transition (EMT) following staining for vimentin and N-cadherin. Few atypical cells were also isolated from age-matched healthy donors (0.7 - 2.8 CTCs/mL), while none was detected in younger healthy donors. Using a threshold calculated from the age-matched healthy donors (3.31 CTCs/mL = mean + 2CV), 70% of the patients were characterized as “positive for CTCs”. No correlation was found between CTC counts and elevated PSA level. CONCLUSION These results demonstrate the ability to rapidly collect pure populations of CTCs in metastatic prostate cancer, independent of surface marker expression, without prior sample preparation. Future studies will use chips with optimized capture performance, sample recycling, and will include CTC molecular analysis by targeted panel sequencing. A larger cohort of healthy donors is also being examined to determine a statistically-robust CTC baseline for this size-based capture approach. [1] Scher Hi, et al., J. Clin. Oncol. 2015 [2] Sollier E, et al., Lab Chip 2014 Citation Format: Edward Pao, Corinne Renier, Clementine Lemaire, James Che, Melissa Matsumoto Di Carlo, Melanie Triboulet, Sandy Srivinas, Stefanie S. Jeffrey, Rajan P. Kulkarni, Matthew Rettig, Elodie Sollier, Dino Di Carlo. Label-free collection of prostate circulating tumor cells using microfluidic Vortex technology. [abstract]. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research; 2016 Apr 16-20; New Orleans, LA. Philadelphia (PA): AACR; Cancer Res 2016;76(14 Suppl):Abstract nr 4967.

Collaboration


Dive into the Elodie Sollier's collaboration.

Top Co-Authors

Avatar

Dino Di Carlo

University of California

View shared research outputs
Top Co-Authors

Avatar

James Che

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hervé Rostaing

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Hamed Amini

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Luc Achard

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge