Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Corné M. J. Pieterse is active.

Publication


Featured researches published by Corné M. J. Pieterse.


Nature Chemical Biology | 2009

Networking by small-molecule hormones in plant immunity

Corné M. J. Pieterse; Antonio Leon-Reyes; Sjoerd Van der Ent; Saskia C. M. Van Wees

Plants live in complex environments in which they intimately interact with a broad range of microbial pathogens with different lifestyles and infection strategies. The evolutionary arms race between plants and their attackers provided plants with a highly sophisticated defense system that, like the animal innate immune system, recognizes pathogen molecules and responds by activating specific defenses that are directed against the invader. Recent advances in plant immunity research have provided exciting new insights into the underlying defense signaling network. Diverse small-molecule hormones play pivotal roles in the regulation of this network. Their signaling pathways cross-communicate in an antagonistic or synergistic manner, providing the plant with a powerful capacity to finely regulate its immune response. Pathogens, on the other hand, can manipulate the plants defense signaling network for their own benefit by affecting phytohormone homeostasis to antagonize the host immune response.


Annual Review of Cell and Developmental Biology | 2012

Hormonal Modulation of Plant Immunity

Corné M. J. Pieterse; Dieuwertje Van der Does; Christos Zamioudis; Antonio Leon-Reyes; Saskia C. M. Van Wees

Plant hormones have pivotal roles in the regulation of plant growth, development, and reproduction. Additionally, they emerged as cellular signal molecules with key functions in the regulation of immune responses to microbial pathogens, insect herbivores, and beneficial microbes. Their signaling pathways are interconnected in a complex network, which provides plants with an enormous regulatory potential to rapidly adapt to their biotic environment and to utilize their limited resources for growth and survival in a cost-efficient manner. Plants activate their immune system to counteract attack by pathogens or herbivorous insects. Intriguingly, successful plant enemies evolved ingenious mechanisms to rewire the plants hormone signaling circuitry to suppress or evade host immunity. Evidence is emerging that beneficial root-inhabiting microbes also hijack the hormone-regulated immune signaling network to establish a prolonged mutualistic association, highlighting the central role of plant hormones in the regulation of plant growth and survival.


The Plant Cell | 1998

A Novel Signaling Pathway Controlling Induced Systemic Resistance in Arabidopsis

Corné M. J. Pieterse; Saskia C. M. Van Wees; Johan A. Van Pelt; M. Knoester; Ramon Laan; Han Gerrits; Peter Weisbeek; Leendert C. van Loon

Plants have the ability to acquire an enhanced level of resistance to pathogen attack after being exposed to specific biotic stimuli. In Arabidopsis, nonpathogenic, root-colonizing Pseudomonas fluorescens bacteria trigger an induced systemic resistance (ISR) response against infection by the bacterial leaf pathogen P. syringae pv tomato. In contrast to classic, pathogen-induced systemic acquired resistance (SAR), this rhizobacteria-mediated ISR response is independent of salicylic acid accumulation and pathogenesis-related gene activation. Using the jasmonate response mutant jar1, the ethylene response mutant etr1, and the SAR regulatory mutant npr1, we demonstrate that signal transduction leading to P. fluorescens WCS417r–mediated ISR requires responsiveness to jasmonate and ethylene and is dependent on NPR1. Similar to P. fluorescens WCS417r, methyl jasmonate and the ethylene precursor 1-aminocyclopropane-1-carboxylate were effective in inducing resistance against P. s. tomato in salicylic acid–nonaccumulating NahG plants. Moreover, methyl jasmonate–induced protection was blocked in jar1, etr1, and npr1 plants, whereas 1-aminocyclopropane-1-carboxylate–induced protection was affected in etr1 and npr1 plants but not in jar1 plants. Hence, we postulate that rhizobacteria-mediated ISR follows a novel signaling pathway in which components from the jasmonate and ethylene response are engaged successively to trigger a defense reaction that, like SAR, is regulated by NPR1. We provide evidence that the processes downstream of NPR1 in the ISR pathway are divergent from those in the SAR pathway, indicating that NPR1 differentially regulates defense responses, depending on the signals that are elicited during induction of resistance.


The Plant Cell | 2003

NPR1 Modulates Cross-Talk between Salicylate- and Jasmonate-Dependent Defense Pathways through a Novel Function in the Cytosol

Steven H. Spoel; Annemart Koornneef; Susanne M. C. Claessens; Jerome Korzelius; Johan A. Van Pelt; Martin J. Mueller; Antony Buchala; Jean-Pierre Métraux; Rebecca L. Brown; Kemal Kazan; L.C. van Loon; Xinnian Dong; Corné M. J. Pieterse

Plant defenses against pathogens and insects are regulated differentially by cross-communicating signal transduction pathways in which salicylic acid (SA) and jasmonic acid (JA) play key roles. In this study, we investigated the molecular mechanism of the antagonistic effect of SA on JA signaling. Arabidopsis plants unable to accumulate SA produced 25-fold higher levels of JA and showed enhanced expression of the JA-responsive genes LOX2, PDF1.2, and VSP in response to infection by Pseudomonas syringae pv tomato DC3000, indicating that in wild-type plants, pathogen-induced SA accumulation is associated with the suppression of JA signaling. Analysis of the Arabidopsis mutant npr1, which is impaired in SA signal transduction, revealed that the antagonistic effect of SA on JA signaling requires the regulatory protein NPR1. Nuclear localization of NPR1, which is essential for SA-mediated defense gene expression, is not required for the suppression of JA signaling, indicating that cross-talk between SA and JA is modulated through a novel function of NPR1 in the cytosol.


Molecular Plant-microbe Interactions | 2005

Signal Signature and Transcriptome Changes of Arabidopsis During Pathogen and Insect Attack

Martin de Vos; Vivian R. Van Oosten; Remco M. P. Van Poecke; Johan A. Van Pelt; María J. Pozo; Martin J. Mueller; Antony Buchala; Jean-Pierre Métraux; L.C. van Loon; Marcel Dicke; Corné M. J. Pieterse

Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv. tomato), a pathogenic leaf fungus (Alternaria brassicicola), tissue-chewing caterpillars (Pieris rapae), cell-content-feeding thrips (Frankliniella occidentalis), or phloem-feeding aphids (Myzus persicae). Monitoring the signal signature in each plant-attacker combination showed that the kinetics of SA, JA, and ET production varies greatly in both quantity and timing. Analysis of global gene expression profiles demonstrated that the signal signature characteristic of each Arabidopsis-attacker combination is orchestrated into a surprisingly complex set of transcriptional alterations in which, in all cases, stress-related genes are overrepresented. Comparison of the transcript profiles revealed that consistent changes induced by pathogens and insects with very different modes of attack can show considerable overlap. Of all consistent changes induced by A. brassicicola, Pieris rapae, and E occidentalis, more than 50% also were induced consistently by P. syringae. Notably, although these four attackers all stimulated JA biosynthesis, the majority of the changes in JA-responsive gene expression were attacker specific. All together, our study shows that SA, JA, and ET play a primary role in the orchestration of the plants defense response, but other regulatory mechanisms, such as pathway cross-talk or additional attacker-induced signals, eventually shape the highly complex attacker-specific defense response.


Plant Physiology | 2008

Cross Talk in Defense Signaling

Annemart Koornneef; Corné M. J. Pieterse

Plants are equipped with an array of defense mechanisms to protect themselves against attack by herbivorous insects and microbial pathogens. Some of these defense mechanisms are preexisting, whereas others are only activated upon insect or pathogen invasion. Induced defense responses entail fitness


Trends in Plant Science | 1999

Salicylic acid-independent plant defence pathways

Corné M. J. Pieterse; L.C. van Loon

Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.


Annual Review of Phytopathology | 2014

Induced Systemic Resistance by Beneficial Microbes

Corné M. J. Pieterse; Christos Zamioudis; Roeland L. Berendsen; David M. Weller; Saskia C. M. Van Wees; Peter A. H. M. Bakker

Beneficial microbes in the microbiome of plant roots improve plant health. Induced systemic resistance (ISR) emerged as an important mechanism by which selected plant growth-promoting bacteria and fungi in the rhizosphere prime the whole plant body for enhanced defense against a broad range of pathogens and insect herbivores. A wide variety of root-associated mutualists, including Pseudomonas, Bacillus, Trichoderma, and mycorrhiza species sensitize the plant immune system for enhanced defense without directly activating costly defenses. This review focuses on molecular processes at the interface between plant roots and ISR-eliciting mutualists, and on the progress in our understanding of ISR signaling and systemic defense priming. The central role of the root-specific transcription factor MYB72 in the onset of ISR and the role of phytohormones and defense regulatory proteins in the expression of ISR in aboveground plant parts are highlighted. Finally, the ecological function of ISR-inducing microbes in the root microbiome is discussed.


Current Opinion in Plant Biology | 2008

Plant immune responses triggered by beneficial microbes

Saskia C. M. Van Wees; Sjoerd Van der Ent; Corné M. J. Pieterse

Beneficial soil-borne microorganisms, such as plant growth promoting rhizobacteria and mycorrhizal fungi, can improve plant performance by inducing systemic defense responses that confer broad-spectrum resistance to plant pathogens and even insect herbivores. Different beneficial microbe-associated molecular patterns (MAMPs) are recognized by the plant, which results in a mild, but effective activation of the plant immune responses in systemic tissues. Evidence is accumulating that systemic resistance induced by different beneficials is regulated by similar jasmonate-dependent and ethylene-dependent signaling pathways and is associated with priming for enhanced defense.


Molecular Plant-microbe Interactions | 2004

The Transcriptome of Rhizobacteria-Induced Systemic Resistance in Arabidopsis

B.W.M. Verhagen; Jane Glazebrook; Tong Zhu; Hur Song Chang; L.C. van Loon; Corné M. J. Pieterse

Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to the plant hormones jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance, rhizobacteria-mediated ISR is not associated with changes in the expression of genes encoding pathogenesis-related proteins. To identify ISR-related genes, we surveyed the transcriptional response of over 8,000 Arabidopsis genes during rhizobacteria-mediated ISR. Locally in the roots, ISR-inducing Pseudomonas fluorescens WCS417r bacteria elicited a substantial change in the expression of 97 genes. However, systemically in the leaves, none of the approximately 8,000 genes tested showed a consistent change in expression in response to effective colonization of the roots by WCS417r, indicating that the onset of ISR in the leaves is not associated with detectable changes in gene expression. After challenge inoculation of WCS417r-induced plants with the bacterial leaf pathogen P. syringae pv. tomato DC3000, 81 genes showed an augmented expression pattern in ISR-expressing leaves, suggesting that these genes were primed to respond faster or more strongly upon pathogen attack. The majority of the primed genes was predicted to be regulated by jasmonic acid or ethylene signaling. Priming of pathogen-induced genes allows the plant to react more effectively to the invader encountered, which might explain the broad-spectrum action of rhizobacteria-mediated ISR.

Collaboration


Dive into the Corné M. J. Pieterse's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marcel Dicke

Wageningen University and Research Centre

View shared research outputs
Top Co-Authors

Avatar

Jurriaan Ton

University of Sheffield

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María J. Pozo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge