L.C. van Loon
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by L.C. van Loon.
The Plant Cell | 2003
Steven H. Spoel; Annemart Koornneef; Susanne M. C. Claessens; Jerome Korzelius; Johan A. Van Pelt; Martin J. Mueller; Antony Buchala; Jean-Pierre Métraux; Rebecca L. Brown; Kemal Kazan; L.C. van Loon; Xinnian Dong; Corné M. J. Pieterse
Plant defenses against pathogens and insects are regulated differentially by cross-communicating signal transduction pathways in which salicylic acid (SA) and jasmonic acid (JA) play key roles. In this study, we investigated the molecular mechanism of the antagonistic effect of SA on JA signaling. Arabidopsis plants unable to accumulate SA produced 25-fold higher levels of JA and showed enhanced expression of the JA-responsive genes LOX2, PDF1.2, and VSP in response to infection by Pseudomonas syringae pv tomato DC3000, indicating that in wild-type plants, pathogen-induced SA accumulation is associated with the suppression of JA signaling. Analysis of the Arabidopsis mutant npr1, which is impaired in SA signal transduction, revealed that the antagonistic effect of SA on JA signaling requires the regulatory protein NPR1. Nuclear localization of NPR1, which is essential for SA-mediated defense gene expression, is not required for the suppression of JA signaling, indicating that cross-talk between SA and JA is modulated through a novel function of NPR1 in the cytosol.
Molecular Plant-microbe Interactions | 2005
Martin de Vos; Vivian R. Van Oosten; Remco M. P. Van Poecke; Johan A. Van Pelt; María J. Pozo; Martin J. Mueller; Antony Buchala; Jean-Pierre Métraux; L.C. van Loon; Marcel Dicke; Corné M. J. Pieterse
Plant defenses against pathogens and insects are regulated differentially by cross-communicating signaling pathways in which salicylic acid (SA), jasmonic acid (JA), and ethylene (ET) play key roles. To understand how plants integrate pathogen- and insect-induced signals into specific defense responses, we monitored the dynamics of SA, JA, and ET signaling in Arabidopsis after attack by a set of microbial pathogens and herbivorous insects with different modes of attack. Arabidopsis plants were exposed to a pathogenic leaf bacterium (Pseudomonas syringae pv. tomato), a pathogenic leaf fungus (Alternaria brassicicola), tissue-chewing caterpillars (Pieris rapae), cell-content-feeding thrips (Frankliniella occidentalis), or phloem-feeding aphids (Myzus persicae). Monitoring the signal signature in each plant-attacker combination showed that the kinetics of SA, JA, and ET production varies greatly in both quantity and timing. Analysis of global gene expression profiles demonstrated that the signal signature characteristic of each Arabidopsis-attacker combination is orchestrated into a surprisingly complex set of transcriptional alterations in which, in all cases, stress-related genes are overrepresented. Comparison of the transcript profiles revealed that consistent changes induced by pathogens and insects with very different modes of attack can show considerable overlap. Of all consistent changes induced by A. brassicicola, Pieris rapae, and E occidentalis, more than 50% also were induced consistently by P. syringae. Notably, although these four attackers all stimulated JA biosynthesis, the majority of the changes in JA-responsive gene expression were attacker specific. All together, our study shows that SA, JA, and ET play a primary role in the orchestration of the plants defense response, but other regulatory mechanisms, such as pathway cross-talk or additional attacker-induced signals, eventually shape the highly complex attacker-specific defense response.
Plant Molecular Biology | 1985
L.C. van Loon
Behandeling van het optreden en eigenschappen van - in verband met het ontstaan van planteziekten voorkomende - eiwitten, de inductie en mogelijke functies van deze eiwitten
European Journal of Plant Pathology | 1997
L.C. van Loon
A boat trailer having a wheel and axle supported frame including a pair of V-shaped cross members supporting a pair of elongated, laterally spaced bunks for supporting a single personal watercraft, a tongue unit longitudinally adjustably attached to the front of the frame, and a winch mounting assembly including a winch post longitudinally adjustably mounted on the tongue in a plurality of vertically adjustable positions for carrying a bow stop and a ratchet-action winch mounted intermediate the ends of the post for strap engagement with the watercraft.
Trends in Plant Science | 1999
Corné M. J. Pieterse; L.C. van Loon
Salicylic acid is an important signalling molecule involved in both locally and systemically induced disease resistance responses. Recent advances in our understanding of plant defence signalling have revealed that plants employ a network of signal transduction pathways, some of which are independent of salicylic acid. Evidence is emerging that jasmonic acid and ethylene play key roles in these salicylic acid-independent pathways. Cross-talk between the salicylic acid-dependent and the salicylic acid-independent pathways provides great regulatory potential for activating multiple resistance mechanisms in varying combinations.
Virology | 1970
L.C. van Loon; A. van Kammen
Abstract Electrophoresis in 5, 7.5, and 10% acrylamide gels revealed that characteristic changes appear in the protein constitution of N. tabacum var. ‘Samsun,’ ‘Samsun NN,’ and N. glutinosa after infection with tobacco mosaic virus (TMV). Apart from significant quantitative changes, one new band was present in Samsun plants 4 weeks after infection. This band was characterized as TMV coat protein by coelectrophoresis and serology. A change in the electrophoretic mobility of the major band was recorded. In Samsun NN plants four new bands (I–IV) were present 1 week after infection. These bands are not related to TMV coat protein and are not new isozymes of peroxidase, polyphenoloxidase, acid phosphatase, glucose-6-phosphate dehydrogenase, or 6-phosphogluconate dehydrogenase. The bands first appear at the onset of necrosis and increase in intensity with time. Five days after infection band I ceases to increase, whereas bands II, III, and IV increase up to day 14. From day 7 onward, the four bands are also present in the noninoculated, young developing leaves, where they further increase with time. The amount of the four new protein components was related to lesion density and was reduced by treatment of the leaves with actinomycin D 2 days after infection. In N. glutinosa one new band was induced and two bands increased markedly after infection, while one had disappeared from the protein pattern. These changes relate to other protein components than those found in infected Samsun NN, but are also apparent in the noninoculated parts of the plants from day 7 after infection. The possible relation of the new protein components to the phenomenon of systemic acquired resistance is discussed.
European Journal of Plant Pathology | 2007
L.C. van Loon
Non-pathogenic soilborne microorganisms can promote plant growth, as well as suppress diseases. Plant growth promotion is taken to result from improved nutrient acquisition or hormonal stimulation. Disease suppression can occur through microbial antagonism or induction of resistance in the plant. Several rhizobacterial strains have been shown to act as plant growth-promoting bacteria through both stimulation of growth and induced systemic resistance (ISR), but it is not clear in how far both mechanisms are connected. Induced resistance is manifested as a reduction of the number of diseased plants or in disease severity upon subsequent infection by a pathogen. Such reduced disease susceptibility can be local or systemic, result from developmental or environmental factors and depend on multiple mechanisms. The spectrum of diseases to which PGPR-elicited ISR confers enhanced resistance overlaps partly with that of pathogen-induced systemic acquired resistance (SAR). Both ISR and SAR represent a state of enhanced basal resistance of the plant that depends on the signalling compounds jasmonic acid and salicylic acid, respectively, and pathogens are differentially sensitive to the resistances activated by each of these signalling pathways. Root-colonizing Pseudomonas bacteria have been shown to alter plant gene expression in roots and leaves to different extents, indicative of recognition of one or more bacterial determinants by specific plant receptors. Conversely, plants can alter root exudation and secrete compounds that interfere with quorum sensing (QS) regulation in the bacteria. Such two-way signalling resembles the interaction of root-nodulating Rhizobia with legumes and between mycorrhizal fungi and roots of the majority of plant species. Although ISR-eliciting rhizobacteria can induce typical early defence-related responses in cell suspensions, in plants they do not necessarily activate defence-related gene expression. Instead, they appear to act through priming of effective resistance mechanisms, as reflected by earlier and stronger defence reactions once infection occurs.
Molecular Plant-microbe Interactions | 2004
B.W.M. Verhagen; Jane Glazebrook; Tong Zhu; Hur Song Chang; L.C. van Loon; Corné M. J. Pieterse
Plants develop an enhanced defensive capacity against a broad spectrum of plant pathogens after colonization of the roots by selected strains of nonpathogenic, fluorescent Pseudomonas spp. In Arabidopsis thaliana, this rhizobacteria-induced systemic resistance (ISR) functions independently of salicylic acid but requires responsiveness to the plant hormones jasmonic acid and ethylene. In contrast to pathogen-induced systemic acquired resistance, rhizobacteria-mediated ISR is not associated with changes in the expression of genes encoding pathogenesis-related proteins. To identify ISR-related genes, we surveyed the transcriptional response of over 8,000 Arabidopsis genes during rhizobacteria-mediated ISR. Locally in the roots, ISR-inducing Pseudomonas fluorescens WCS417r bacteria elicited a substantial change in the expression of 97 genes. However, systemically in the leaves, none of the approximately 8,000 genes tested showed a consistent change in expression in response to effective colonization of the roots by WCS417r, indicating that the onset of ISR in the leaves is not associated with detectable changes in gene expression. After challenge inoculation of WCS417r-induced plants with the bacterial leaf pathogen P. syringae pv. tomato DC3000, 81 genes showed an augmented expression pattern in ISR-expressing leaves, suggesting that these genes were primed to respond faster or more strongly upon pathogen attack. The majority of the primed genes was predicted to be regulated by jasmonic acid or ethylene signaling. Priming of pathogen-induced genes allows the plant to react more effectively to the invader encountered, which might explain the broad-spectrum action of rhizobacteria-mediated ISR.
Molecular Plant-microbe Interactions | 1997
A.C.M. van Wees; Corné M. J. Pieterse; A. Trijssenaar; Y.A.M. van 't Westende; F. Hartog; L.C. van Loon
Selected nonpathogenic, root-colonizing bacteria are able to elicit induced systemic resistance (ISR) in plants. To elucidate the molecular mechanisms underlying this type of systemic resistance, an Arabidopsis-based model system was developed in which Pseudomonas syringae pv. tomato and Fusarium oxysporum f. sp. raphani were used as challenging pathogens. In Arabidopsis thaliana ecotypes Columbia and Landsberg erecta, colonization of the rhizosphere by P. fluorescens strain WCS417r induced systemic resistance against both pathogens. In contrast, ecotype RLD did not respond to WCS417r treatment, whereas all three ecotypes expressed systemic acquired resistance upon treatment with salicylic acid (SA). P. fluorescens strain WCS374r, previously shown to induce ISR in radish, did not elicit ISR in Arabidopsis. The opposite was found for P. putida strain WCS358r, which induced ISR in Arabidopsis but not in radish. These results demonstrate that rhizosphere pseudomonads are differentially active in eliciting ISR in related plant species. The outer membrane lipopolysaccharide (LPS) of WCS417r is the main ISR-inducing determinant in radish and carnation, and LPS-containing cell walls also elicit ISR in Arabidopsis. However, mutant WCS417rOA-, lacking the O-antigenic side chain of the LPS, induced levels of protection similar to those induced by wild-type WCS417r. This indicates that ISR-inducing bacteria produce more than a single factor that trigger ISR in Arabidopsis. Furthermore, WCS417r and WCS358r induced protection in both wild-type Arabidopsis and SA-nonaccumulating NahG plants without activating pathogenesis-related gene expression. This suggests that elicitation of an SA-independent signaling pathway is a characteristic feature of ISR-inducing biocontrol bacteria.
Phytopathology | 2007
Peter A. H. M. Bakker; Corné M. J. Pieterse; L.C. van Loon
ABSTRACT Fluorescent Pseudomonas spp. have been studied for decades for their plant growth-promoting effects through effective suppression of soilborne plant diseases. The modes of action that play a role in disease suppression by these bacteria include siderophore-mediated competition for iron, antibiosis, production of lytic enzymes, and induced systemic resistance (ISR). The involvement of ISR is typically studied in systems in which the Pseudomonas bacteria and the pathogen are inoculated and remain spatially separated on the plant, e.g., the bacteria on the root and the pathogen on the leaf, or by use of split root systems. Since no direct interactions are possible between the two populations, suppression of disease development has to be plant-mediated. In this review, bacterial traits involved in Pseudomonas-mediated ISR will be discussed.