Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Cornelia Krause is active.

Publication


Featured researches published by Cornelia Krause.


Nature plants | 2015

Woody biomass production lags stem-girth increase by over one month in coniferous forests

Henri E. Cuny; Cyrille B. K. Rathgeber; David Frank; Patrick Fonti; Harri Mäkinen; Peter Prislan; Sergio Rossi; Edurne Martínez del Castillo; Filipe Campelo; Hanuš Vavrčík; Jesús Julio Camarero; Marina V. Bryukhanova; Tuula Jyske; Jožica Gričar; Vladimír Gryc; Martin de Luis; Joana Vieira; Katarina Čufar; Alexander V. Kirdyanov; Walter Oberhuber; Václav Treml; Jian-Guo Huang; Xiaoxia Li; Irene Swidrak; Annie Deslauriers; Eryuan Liang; Pekka Nöjd; Andreas Gruber; Cristina Nabais; Hubert Morin

Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.


Annals of Botany | 2008

Cambial Activity and Intra-annual Xylem Formation in Roots and Stems of Abies balsamea and Picea mariana

Maxime Thibeault-Martel; Cornelia Krause; Hubert Morin; Sergio Rossi

BACKGROUND AND AIMS Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada. METHODS Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004-2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem. KEY RESULTS Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004-2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later. CONCLUSIONS The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring.


Annals of Botany | 2013

A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere.

Sergio Rossi; Tommaso Anfodillo; Katarina Čufar; Henri E. Cuny; AAnnie Deslauriers; Patrick Fonti; David Frank; Jožica Gričar; Andreas Gruber; Gregory M. King; Cornelia Krause; Hubert Morin; Walter Oberhuber; Peter Prislan; Cyrille B. K. Rathgeber

BACKGROUND AND AIMS Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. METHODS Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. KEY RESULTS The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. CONCLUSIONS The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.


Wood Material Science and Engineering | 2008

Relationship between wood porosity, wood density and methyl methacrylate impregnation rate

Wei-Dan Ding; Ahmed Koubaa; Abdelkader Chaala; Tikou Belem; Cornelia Krause

Abstract Mercury intrusion porosimetry (MIP) was used to evaluate the impregnation mechanisms of wood by methyl methacrylate (MMA) through examining the changes in porosity, pore volume, pore size distribution and bulk density of solid wood before and after MMA impregnation. Porosities of MMA-impregnated (hardened) wood samples were lower than those of solid wood samples for six studied species, five hardwoods and one softwood. Densities of hardened wood were enhanced from 45 to 130% depending on the species. The pore volume available for mercury intrusion was shifted from pore d>0.1 µm for solid wood to pore d≤0.1 µm for hardened wood. A pore diameter of 0.1 µm was used as the transition point for MMA impregnation and the increased mercury penetration below this point was attributed to the MMA polymer pore structure. Porosity as an intrinsic property of wood appears to be the main determinant of impregnation rate and polymer retention, especially for porosity with pore diameter >0.1 µm. The results indicate that the MIP technique is an effective tool with which to study the impregnation process.


Frontiers in Plant Science | 2011

Dynamics of depletion and replenishment of water storage in stem and roots of black spruce measured by dendrometers

Audrey Turcotte; Sergio Rossi; Annie Deslauriers; Cornelia Krause; Hubert Morin

In the short term, trees rely on the internal storage of water because it affects their ability to sustain photosynthesis and growth. However, water is not rapidly available for transpiration from all the compartments of the plant and the living tissues of the stem act as a buffer to preclude low water potentials during peaks of transpiration. In this paper, electronic dendrometers were used from mid-June to mid-September 2008 to compare the radius variations in stem and roots of black spruce [Picea mariana (Mill.) B.S.P.] in two sites of the boreal forest of Quebec, Canada, with different soil characteristics and water retention. The duration of the daily cycles was similar between sites and measurement heights but greater amplitudes of contraction and expansion were observed on the stem and in the site with the shallowest soil organic layer. The expansion phase had higher amplitudes and lasted longer than contraction. On average, the contraction phase occurred between 07:00 and 16:30 (legal time), while expansion lasted 14.5 h. The roots in the site with the deepest organic layer showed a wider variation in the onset of contraction, which could be as late as 13:00. The probability of observing the contraction phase depended on precipitation. With a precipitation <0.5 mm h−1, the bivariate posterior probabilities estimated >60% probability of observing contraction between 05:00 and 21:00, decreasing to 20% with precipitation >1.1 mm h−1. These findings demonstrated that the depth of the organic layer plays an important role in maintaining the internal water reserve of trees. The dynamics of water depletion and replenishment can modify the water potential of xylem and cell turgor during the enlargement phase, thus affecting radial growth. Changes in temperature and precipitation regime could influence the dynamics of internal water storage in trees growing on shallower and drier soils.


Annals of Forest Science | 2010

Relationships of climate and cell features in stems and roots of black spruce and balsam fir

Cornelia Krause; Sergio Rossi; Maxime Thibeault-Martel; Pierre Y. Plourde

Abstract• The anatomical differences of mature black spruces and balsam firs were examined at stem and root level in order to characterize their wood properties at cellular level and link these differences to climate.• Anatomical variability of these species was evaluated in relation to climate data gathered from 2001 to 2004 during the cell enlargement (CE) and wall thickening and lignification (WTL) phases. Lumen area, single cell wall thickness and total tracheid radial diameter were analyzed and regrouped into earlywood and latewood.• Results from a principal component analysis (PCA) indicated that both first eigenvectors account for 82% and 90% of total variance for CE and WTL respectively. These component factors revealed that precipitation, humidity and number of days with precipitation significantly influence the lumen area (p = 0.0168) and radial cell diameter (p = 0.0222) in earlywood. Significant differences were registered between species and tree parts (stem and root) for the lumen area, radial cell diameter and cell wall thickness in both earlywood and latewood.• In our study, black spruce exhibited smaller tracheid size in both stem and roots compared to balsam fir. Furthermore, the lower amount of tracheids produced during the growing season and higher proportion of latewood ensure a higher wood density of black spruce. The influence of temperature on earlywood formation is significant, whereas no influence was observed on latewood.Résumé• Les différences anatomiques au niveau de la tige et du système racinaire d’épinettes noires et de pins gris matures ont été examinées afin de caractériser la qualité de leur bois au niveau cellulaire et de le relier aux conditions climatiques.• Les propriétés anatomiques de ces espèces ont été évaluées en relation avec des variables climatiques compilées au cours des années 2001 à 2004 durant la phase d’élargissement des cellules (CE) et celle de l’épaississement et de la lignification des parois (WTL). L’aire du lumen, l’épaisseur des parois ainsi que le nombre total de trachéides au niveau du diamètre radial des cellules ont été analysés et regroupés selon le bois final et le bois initial.• Les résultats issus d’une analyse en composantes principales (PCA) ont révélé que les deux premiers facteurs (eigenvector) représentent 82 % et 90 % de la variance totale de CE et de WTL respectivement. Ces composantes ont indiqué que la précipitation, l’humidité et le nombre de jours avec pluie influencent significativement la formation de l’aire du lumen (p = 0.0168) et le diamètre radial des cellules (p = 0.0222) dans le bois initial. Des différences significatives ont aussi été enregistrées entre les espèces et les parties de l’arbre pour l’aire du lumen, le diamètre radial des cellules et l’épaisseur des parois dans le bois initial comme dans le bois final.• Dans notre étude, l’épinette noire a présenté dans les tiges et les racines des trachéides de plus petite dimension contrairement au sapin baumier. De plus, la faible quantité de trachéides produite durant la saison de croissance combinée à une proportion plus grande de bois final confère à l’épinette noire une densité de bois plus élevée. Une influence significative de la température a été enregistrée sur la formation du bois initial.


Annals of Forest Science | 2015

Growth and basic wood properties of black spruce along an alti-latitudinal gradient in Quebec, Canada

Sergio Rossi; Ernesto Cairo; Cornelia Krause; Annie Deslauriers

Abstract• ContextThe Canadian forest industry is turning its attention towards the unmanaged areas at higher latitudes, where the forest resource is still poorly understood because of lack of accessibility. Despite a lower productivity in terms of volume, northern stands are expected to produce wood of higher quality, which may make these areas attractive for management and production.• AimsThis study aims to test the hypothesis that trees at high latitudes produce wood with better basic properties than trees at lower latitudes.• MethodsGrowth and wood characteristics were assessed according to cambial age in 25 black spruce (Picea mariana) trees from five sites located along an alti-latitudinal gradient in Quebec.• ResultsSites at higher latitudes and altitudes exhibited slower growth rates and lower stem volume. Wood density and mechanical properties were higher in the sites located at lower latitudes or altitudes. Fiber size had higher values in southern sites, but only at younger ages. Principal component analysis confirmed these results, with the northernmost site being the one where growth, density and mechanical properties were generally lowest.• ConclusionThe reduction in growth was not compensated by increases in the basic properties of wood. More extensive samplings are needed to validate the results at larger scale.


Dendrochronologia | 2003

Temporal relations between defoliation caused by spruce budworm (Choristoneura fumiferana Clem.) and growth of balsam fir (Abies balsamea (L.) Mill.)

Cornelia Krause; François Gionest; Hubert Morin; David A. MacLean

Summary Defoliation by spruce budworm ( Choristoneura fumiferana Clem. ) greatly affects balsam fir ( Abies balsamea (L.) Mill.) by reducing needle mass and ring width and eventually resulting in tree death. We analyzed temporal patterns of radial growth in various stem sections of twenty balsam fir growing in two mature stands, one intermediate-aged, and one immature stand in New Brunswick, Canada. Growth was compared to annual defoliation data from aerial surveys to determine the timing of growth reduction throughout the stem. Results indicated that there was a delay between the first radial growth reduction registered in the crown and reduction in the lower part of the stem. The delay was variable, depending upon stand age. In immature trees, ring width reduction occurred almost simultaneously along the entire stem, whereas in mature fir, the growth reduction occurred one to three years earlier in the crown than at the stem base. In mature trees, the reduction in the crown occurred immediately in the first year following severe defoliation (70–100% of current year foliage), whereas in severely defoliated immature trees, growth reduction occurred 1 to 2 years later.


Scandinavian Journal of Forest Research | 2011

Transversal tracheid dimension in thinned black spruce and Jack pine stands in the boreal forest

Cornelia Krause; Sandy Laplante; Pierre-Y. Plourde

Abstract Commercial thinning has recently been applied in the boreal forest of Quebec (Canada) to increase the volume growth of the residual trees. We aimed to discover if the growth response influences the transversal tracheid dimension of thinned black spruce (Picea mariana (Mill.) B.S.P.) and Jack pine (Pinus banksiana Lamb.) stands at 0.2 m stem height. All 20 studied stands have shown a significant growth response after the treatment (p<0.0001), especially trees with the lowest radial growth before thinning in comparison with the stand mean. Growing conditions met by suppressed trees before thinning might favour them in the competition for light, water and biomass production after the treatment. Trees with a positive growth response did not significantly modify their measured transversal tracheid dimension except for trees which increased twofold their ring-width after thinning. In this case, lumen area and radial cell diameter extended significantly. However individuals with a growth decrease after thinning registered significantly lower values in their ring width, earlywood and latewood cell numbers (p<0.0001) in both species.


Tree Physiology | 2017

Xylogenesis in stems and roots after thinning in the boreal forest of Quebec, Canada

Audrey Lemay; Cornelia Krause; Sergio Rossi; Alexis Achim

The reduction of competition through thinning increases radial growth in the stem and roots of many conifer species. However, not much is known about the effect of thinning on the dynamics of wood formation and intra-annual development of the growth ring, especially in the roots, which are an essential part of the tree for stability and resource acquisition. The aim of this study was to evaluate the effect of an experimental thinning on the dynamics and phenology of xylogenesis in the stem and roots of black spruce and balsam fir. Experimental and control trees were selected in two mature even-aged stands, one black spruce (Picea mariana (Mill.) BSP) and one balsam fir (Abies balsamea (L.) Mill.). Wood microcores were collected weekly in the stem and roots from May to October for a period of 4 years. The onset and ending of each cell differentiation phase were computed, as well as growth rate and total cell production. Results show that thinning increased the cell production rate of stem and roots of black spruce and balsam fir. This higher daily growth rate caused an increase in the total number of cells produced by the cambium. The intensity of the treatment was sufficient to significantly increase light availability for residual trees, but insufficient to modify soil temperature and water content to a point at which a significant change in the timing or duration of xylogenesis would be induced. Thus, thinning increased cell production rate and total number of cells produced in both stem and roots, but did not result in a change in the phenology of wood formation that could lead to increased risks of frost damage in the spring or autumn.

Collaboration


Dive into the Cornelia Krause's collaboration.

Top Co-Authors

Avatar

Hubert Morin

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Sergio Rossi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Annie Deslauriers

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Pierre-Y. Plourde

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Lemay

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Audrey Turcotte

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Maxime Thibeault-Martel

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Sudeshna Saha

Université du Québec à Chicoutimi

View shared research outputs
Researchain Logo
Decentralizing Knowledge