Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hubert Morin is active.

Publication


Featured researches published by Hubert Morin.


Trees-structure and Function | 2003

Daily weather response of balsam fir ( Abies balsamea (L.) Mill.) stem radius increment from dendrometer analysis in the boreal forests of Québec (Canada)

Annie Deslauriers; Hubert Morin; Carlo Urbinati; Marco Carrer

Daily stem radial growth of balsam fir [Abies balsamea (L.) Mill.] was studied between 1998 and 2001 using automated point dendrometers to investigate meteorological influence. By dividing the dendrometer day-night variation, the diurnal growth pattern was resolved into the three phases of (1) contraction, (2) expansion and (3) stem radius increment (SRI). The entire circadian cycle (4) defined by the three previous phases was considered as a fourth phase. The mean weather conditions of each phase were compared with the SRI using simple correlation and response function analysis. It was found that the weather conditions prevailing from 1600/1700 hours to 0800/0900 hours corresponding with the expansion-SRI phases had greater impact on SRI. Response function results confirmed most of the correlation analyses and explained up to 95% of the variance of the SRI series. Total rainfall in phases 2, 3 and 4 was correlated positively with SRI, and hence verifies the importance of daily water balance. The importance of water was also demonstrated by the negative effect of high vapour pressure deficit of phase 2, decreasing the possibility of cell radial expansion. The maximum temperature of phase 3 was the only temperature variable having a positive impact on SRI suggesting that night temperature was more important than day temperature in controlling radial growth. These results may influence the process of cell enlargement and reflect only the mechanical aspect of growth.


Dendrochronologia | 2003

Application of the Gompertz equation for the study of xylem cell development

Sergio Rossi; Annie Deslauriers; Hubert Morin

Summary To assess daily relationships between xylem development and the environment, precise knowledge of tree-ring development is required. This includes accurate estimations of the rate and duration of the cell enlargement and wall thickening phases. This paper presents an application where the Gompertz equation is used to calculate cell number increase and to estimate both the rates and periods of the differentiation phases on a daily scale during the growing season. Tests were performed on two coniferous species, Abies balsamea (L.) Mill. and Pinus cembra L., growing in the Canadian boreal forest and on the Italian Alpine treeline respectively. Wood micro-cores, including the most recent tree-rings, were collected during the growing season of 2001. Cross-sections were cut with a microtome and stained with cresyl fast violet to differentiate xylem cells of the growing tree-ring. The number of cells within the zones of radial cell enlargement, secondary wall thickening and mature xylem were counted. The normalised cell number increases were fitted into a Gompertz function [y=f(t)]. The results showed that the function provided suitable descriptions of the cell increase for both Abies balsamea and Pinus cembra with R2 ranging between 0.60 and 0.90. Subsequently, to assess the development phases in time, the Gompertz equation was expressed in function of the independent variable [t=f(y)]. The use of only one equation for the estimation of both cell division and differentiation throughout the vegetative season has demonstrated to be an important improvement.


Trees-structure and Function | 2005

Intra-annual tracheid production in balsam fir stems and the effect of meteorological variables

Annie Deslauriers; Hubert Morin

Tracheid production of balsam fir in the Québec boreal forest (Canada) was studied by repeated cell analysis to investigate the influence of meteorological variables during the growing seasons 1998 to 2000. Wood micro-cores were extracted on a weekly basis throughout the growing season and sections were prepared in order to count the total number of cells produced. From the weekly cell number obtained, the rate of tracheid production was calculated and correlated with meteorological variables. The average total number of cells produced per year was reasonably uniform, increasing only from 36.6 in 1998, to 41.1 in 2000. However, different cell production rates were noted during the growing season. Regression analysis revealed that the cell production rate was largely dependent on minimum air and soil temperature during most of the cell production period. Mean and maximum temperature had less influence on cell production. Moreover, the influence of temperature was higher during earlywood production mainly from the end of May to mid-July. Lagging the weather data by 1–5 days decreased the relationship between temperature and cell production, showing the high correspondence with the same interval where cell production was measured. These results suggest a fast response of the cambium to temperature variation during tree-ring formation.


Plant Cell and Environment | 2010

Xylem phenology and wood production: resolving the chicken-or-egg dilemma

Carlo Lupi; Hubert Morin; Annie Deslauriers; Sergio Rossi

Delays in the start of the growing season reduce the period available for growth and the amount of xylem production. However, a higher number of developing tracheids could prolong cell differentiation and, consequently, lengthen the growing season. The relationship between the amount and duration of cell production in the xylem remains an unresolved issue. The aim of this study was to resolve the chicken-or-egg causality dilemma about duration of growth and cell production through simple- and double-cause models. This was achieved by (1) analysing the intra-annual growth dynamics of the xylem in Picea mariana (Mill.) BSP during 2006-2009 in two contrasting sites of the boreal forest of Quebec, Canada, and (2) extracting the dates of onset and ending of xylem formation and the number of radial cells along the tree ring. A higher number of cells was linked to an earlier onset (r=0.74) and later ending (r=0.61) of cell differentiation. The absence of a relationship between the residuals of the onset and ending of xylogenesis (r(p)=-0.06) indicated that cell production influenced the correlation between the two phenophases of the xylem. These results demonstrated that a higher number of cells produced delay the ending of xylem maturation, so extending the duration of wood formation.


Nature plants | 2015

Woody biomass production lags stem-girth increase by over one month in coniferous forests

Henri E. Cuny; Cyrille B. K. Rathgeber; David Frank; Patrick Fonti; Harri Mäkinen; Peter Prislan; Sergio Rossi; Edurne Martínez del Castillo; Filipe Campelo; Hanuš Vavrčík; Jesús Julio Camarero; Marina V. Bryukhanova; Tuula Jyske; Jožica Gričar; Vladimír Gryc; Martin de Luis; Joana Vieira; Katarina Čufar; Alexander V. Kirdyanov; Walter Oberhuber; Václav Treml; Jian-Guo Huang; Xiaoxia Li; Irene Swidrak; Annie Deslauriers; Eryuan Liang; Pekka Nöjd; Andreas Gruber; Cristina Nabais; Hubert Morin

Wood is the main terrestrial biotic reservoir for long-term carbon sequestration(1), and its formation in trees consumes around 15% of anthropogenic carbon dioxide emissions each year(2). However, the seasonal dynamics of woody biomass production cannot be quantified from eddy covariance or satellite observations. As such, our understanding of this key carbon cycle component, and its sensitivity to climate, remains limited. Here, we present high-resolution cellular based measurements of wood formation dynamics in three coniferous forest sites in northeastern France, performed over a period of 3 years. We show that stem woody biomass production lags behind stem-girth increase by over 1 month. We also analyse more general phenological observations of xylem tissue formation in Northern Hemisphere forests and find similar time lags in boreal, temperate, subalpine and Mediterranean forests. These time lags question the extension of the equivalence between stem size increase and woody biomass production to intra-annual time scales(3, 4, 5, 6). They also suggest that these two growth processes exhibit differential sensitivities to local environmental conditions. Indeed, in the well-watered French sites the seasonal dynamics of stem-girth increase matched the photoperiod cycle, whereas those of woody biomass production closely followed the seasonal course of temperature. We suggest that forecasted changes in the annual cycle of climatic factors(7) may shift the phase timing of stem size increase and woody biomass production in the future.


Annals of Botany | 2008

Cambial Activity and Intra-annual Xylem Formation in Roots and Stems of Abies balsamea and Picea mariana

Maxime Thibeault-Martel; Cornelia Krause; Hubert Morin; Sergio Rossi

BACKGROUND AND AIMS Studies on xylogenesis focus essentially on the stem, whereas there is basically no information about the intra-annual growth of other parts of the tree. As roots strongly influence carbon allocation and tree development, knowledge of the dynamics of xylem production and maturation in roots at a short time scale is required for a better understanding of the phenomenon of tree growth. This study compared cambial activity and xylem formation in stem and roots in two conifers of the boreal forest in Canada. METHODS Wood microcores were collected weekly in stem and roots of ten Abies balsamea and ten Picea mariana during the 2004-2006 growing seasons. Cross-sections were cut using a rotary microtome, stained with cresyl violet acetate and observed under visible and polarized light. The number of cells in the cambial zone and in differentiation, plus the number of mature cells, was counted along the developing xylem. KEY RESULTS Xylem formation lasted from the end of May to the end of September, with no difference between stem and roots in 2004-2005. On the contrary, in 2006 a 1-week earlier beginning of cell differentiation was observed in the stem, with cell wall thickening and lignification in roots ending up to 22 d later than in the stem. Cell production in the stem was concentrated early in the season, in June, while most cell divisions in roots occurred 1 month later. CONCLUSIONS The intra-annual dynamics of growth observed in stem and roots could be related to the different amount of cells produced by the cambium and the patterns of air and soil temperature occurring in spring.


Forest Ecology and Management | 2001

Effects of light and intraspecific competition on growth and crown morphology of two size classes of understory balsam fir saplings

Robin Duchesneau; Isabelle Lesage; Christian Messier; Hubert Morin

This paper characterizes the growth and crown morphology of young balsam fir saplings naturally regenerated under a gradient of understory light environments and intraspecific competition densities for two size classes (50-100 cm and 100-200 cm). Most growth and crown morphological parameters investigated were strongly related to the natural light gradient investigated (3-83% full sunlight), but the relationship tended to plateau at around 25% full sunlight. The relationships were generally better for the larger size class. Intraspecific competition did not significantly affect growth and crown morphology of saplings receiving less than 25% full sunlight, but it affected relative height growth, relative radial growth and the apical dominance ratio for those receiving more than 25% full sunlight (R2=0.506; p<0.001; R2=0.403; p<0.002; R2=0.348; p<0.001, respectively). These results suggest that live crown ratio, apical dominance ratio and the number of internodal branches can provide, alone or in combination, useful indicators of vigour for understory fir. Such a study provides the basic data inputs required for the development of empirically-derived mechanistic models that can predict understory tree growth and survival.


Global Change Biology | 2014

Lengthening of the duration of xylogenesis engenders disproportionate increases in xylem production

Sergio Rossi; Marie-Josée Girard; Hubert Morin

In cold climates, the expected global warming will lead to earlier cambial resumptions in spring, with a resultant lengthening of the growing season but unknown consequences on forest productivity. The phenological traits of cambium activity and xylem formation were analyzed at a short time scale along a thermal gradient represented by an alti-latitudinal range from the 48th to 53rd parallels and covering the whole closed black-spruce [Picea mariana (Mill.) BSP] forest in Quebec, Canada. A hypothesis was tested that warmer temperatures influence cambium phenology, allowing longer duration and higher intensity of growth, and resulting in proportionally increased xylem production. From April to October 2012, cell division in cambium and post-cambial differentiation of xylem were observed on anatomical sections obtained from microcores collected weekly from the stem of fifty trees. The southern and warmer site was characterized by the highest radial growth, which corresponded to both the highest rates and longest durations of cell production. The differences in terms of xylem phenology and growth were marginal between the other sites. Xylem growth was positively correlated with rate and duration of cell production, with the latter explaining most variability in growth. Within the range analyzed, the relationship between temperature and most phenological phases of xylogenesis was linear. On the contrary, temperature was related with cell production according to an exponential pattern. Periods of xylogenesis of 14 days longer (+13.1%) corresponded to a massive increase in cell production (33 cells, +109%). This disproportionate change occurred at a May-September average temperature of ca. 14 °C and a snow-free period of 210-235 days. At the lower boundary of the distribution of black spruce, small environmental changes allowing marginal lengthening of the period of cell division could potentially lead to disproportionate increases in xylem cell production, with substantial consequences for the productivity of this boreal species.


Annals of Botany | 2013

A meta-analysis of cambium phenology and growth: linear and non-linear patterns in conifers of the northern hemisphere.

Sergio Rossi; Tommaso Anfodillo; Katarina Čufar; Henri E. Cuny; AAnnie Deslauriers; Patrick Fonti; David Frank; Jožica Gričar; Andreas Gruber; Gregory M. King; Cornelia Krause; Hubert Morin; Walter Oberhuber; Peter Prislan; Cyrille B. K. Rathgeber

BACKGROUND AND AIMS Ongoing global warming has been implicated in shifting phenological patterns such as the timing and duration of the growing season across a wide variety of ecosystems. Linear models are routinely used to extrapolate these observed shifts in phenology into the future and to estimate changes in associated ecosystem properties such as net primary productivity. Yet, in nature, linear relationships may be special cases. Biological processes frequently follow more complex, non-linear patterns according to limiting factors that generate shifts and discontinuities, or contain thresholds beyond which responses change abruptly. This study investigates to what extent cambium phenology is associated with xylem growth and differentiation across conifer species of the northern hemisphere. METHODS Xylem cell production is compared with the periods of cambial activity and cell differentiation assessed on a weekly time scale on histological sections of cambium and wood tissue collected from the stems of nine species in Canada and Europe over 1-9 years per site from 1998 to 2011. KEY RESULTS The dynamics of xylogenesis were surprisingly homogeneous among conifer species, although dispersions from the average were obviously observed. Within the range analysed, the relationships between the phenological timings were linear, with several slopes showing values close to or not statistically different from 1. The relationships between the phenological timings and cell production were distinctly non-linear, and involved an exponential pattern. CONCLUSIONS The trees adjust their phenological timings according to linear patterns. Thus, shifts of one phenological phase are associated with synchronous and comparable shifts of the successive phases. However, small increases in the duration of xylogenesis could correspond to a substantial increase in cell production. The findings suggest that the length of the growing season and the resulting amount of growth could respond differently to changes in environmental conditions.


Journal of Experimental Botany | 2012

Causes and correlations in cambium phenology: towards an integrated framework of xylogenesis

Sergio Rossi; Hubert Morin; Annie Deslauriers

Although habitually considered as a whole, xylogenesis is a complex process of division and maturation of a pool of cells where the relationship between the phenological phases generating such a growth pattern remains essentially unknown. This study investigated the causal relationships in cambium phenology of black spruce [Picea mariana (Mill.) BSP] monitored for 8 years on four sites of the boreal forest of Quebec, Canada. The dependency links connecting the timing of xylem cell differentiation and cell production were defined and the resulting causal model was analysed with d-sep tests and generalized mixed models with repeated measurements, and tested with Fisher’s C statistics to determine whether and how causality propagates through the measured variables. The higher correlations were observed between the dates of emergence of the first developing cells and between the ending of the differentiation phases, while the number of cells was significantly correlated with all phenological phases. The model with eight dependency links was statistically valid for explaining the causes and correlations between the dynamics of cambium phenology. Causal modelling suggested that the phenological phases involved in xylogenesis are closely interconnected by complex relationships of cause and effect, with the onset of cell differentiation being the main factor directly or indirectly triggering all successive phases of xylem maturation.

Collaboration


Dive into the Hubert Morin's collaboration.

Top Co-Authors

Avatar

Sergio Rossi

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Annie Deslauriers

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Cornelia Krause

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Réjean Gagnon

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian Messier

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Sylvain Parent

Université du Québec à Montréal

View shared research outputs
Top Co-Authors

Avatar

Danielle Laprise

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar

Carlo Lupi

Université du Québec à Chicoutimi

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge